Explanation:
Pressure is the same for both plungers.
P = P
F / A = F / A
F / (¼ π d²) = F / (¼ π d²)
F / d² = F / d²
5 N / (0.05 m)² = F / (1 m)²
F = 2000 N
None of the options are correct.
The first option.
The total mechanical energy before an action (which makes up PE and KE) equals the total mechanical energy after an action.
So
KEi + PEi = KEf + PEf
Answer:
A massive object (like a galaxy cluster) bends the light from an object (like a quasar) that lies behind it.
Explanation:
A massive object, like a galaxy cluster, is able to deform the space-time shape as a consequence of its own gravity, so the light that it is coming from a source that is behind it in the line of sight will be bend or distorts in a way that will be magnified, making small arcs around the cluster with the image of the background object.
This technique is useful for astronomers since they make research of faraway objects (at hight redshift) that otherwise will difficult to detect with a telescope.
Answer:
the tension in the part of the cord attached to the textbook is 7.4989 N
Explanation:
Given the data in the question;
As illustrated in the image below;
first we determine the value of the acceleration,
along vertical direction; we use the second equation of motion;
y = ut +
a
t²
we substitute;
0 m/s for u, 1.29 m for y, 0.850 s for t,
1.29 = 0×0.850 +
×a
×(0.850)²
1.29 = 0.36125a
a
= 1.29 / 0.36125
a
= 3.5709 m/s²
Now when the text book is moving with acceleration , the dynamic equation will be;
T₁ = m₁a
where m₁ is the mass of the text book ( 2.10 kg )
a
is the vertical acceleration ( 3.5709 m/s² )
so we substitute
T₁ = 2.10 × 3.5709
T₁ = 7.4989 N
Therefore, the tension in the part of the cord attached to the textbook is 7.4989 N