There is 3800 mmHg in 5 atm
While metallic bonds have the strong electrostatic force of attractions between the cation or atoms and the delocalized electrons in the geometrical arrangement of the two metals. ... Metallic bonds are malleable and ductile, while covalent bonds and ionic bonds non-malleable and non-ductile.
Answer:
The following properties are either physical or chemical. Which one is different from the rest based on those two categories? We chose all of the above
Hey there!:
Molar mass:
CHCl3 = ( 12.01 * 1 )+ (1.008 * 1 ) + ( 35.45 * 3 ) => 119.37 g/mol
C% = ( atomic mass C / molar mass CHCl3 ) * 100
For C :
C % = (12.01 / 119.37 ) * 100
C% = ( 0.1006 * 100 )
C% = 10.06 %
For H :
H% = ( atomic mass H / molar mass CHCl3 ) * 100
H% = ( 1.008 / 119.37 ) * 100
H% = 0.008444 * 100
H% = 0.8444 %
For Cl :
Cl % ( molar mass Cl3 / molar mass CHCl3 ):
Cl% = ( 3 * 35.45 / 119.37 ) * 100
Cl% = ( 106.35 / 119.37 ) * 100
Cl% = 0.8909 * 100
Cl% = 89.9%
Hope that helps!
DE = dH - PdV
<span>2 H2O(g) → 2 H2(g) + O2(g) </span>
<span>You can see that there are 2 moles of gas in the reactants and 3 moles of gas in the products. </span>
<span>1 moles of ideal gas occupies the same volume as 1 mole of any other ideal gas under the same conditions of temp and pressure. </span>
<span>Since it is done under constant temp and pressure that means the volume change will be equal to the volume of 1 mole of gas </span>
<span>2 moles reacts to form 3 moles </span>
<span>The gas equation is </span>
<span>PV = nRT </span>
<span>P = pressure </span>
<span>V = volume (unknown) </span>
<span>n = moles (1) </span>
<span>R = gas constant = 8.314 J K^-1 mol^-1 </span>
<span>- the gas constant is different for different units of temp and pressure (see wikki link) in this case temp and pressure are constant, and we want to put the result in an equation that has Joules in it, so we select 8.314 JK^-1mol^-1) </span>
<span>T = temp in Kelvin (kelvin = deg C + 273.15 </span>
<span>So T = 403.15 K </span>
<span>Now, you can see that PV is on one side of the equation, and we are looking to put PdV in our dE equation. So we can say </span>
<span>dE = dH -dnRT (because PV = nRT) </span>
<span>Also, since the gas constant is in the unit of Joules, we need to convert dH to Joules </span>
<span>dH = 483.6 kJ/mol = 483600 Joules/mol </span>
<span>dE = 483600 J/mol - (1.0 mol x 8.314 J mol^-1K-1 x 403.15 K) </span>
<span>dE = 483600 J/mol - 3351.77 J </span>
<span>dE = 480248.23 J/mol </span>
<span>dE = 480.2 kJ/mol </span>