Answer is: Cr⁶⁺.
₂₄Cr 1s²2s²2p⁶3s²3p⁶3d⁵4s¹.
₂₄Cr⁶⁺ 1s²2s²2p⁶3s²3p⁶. 8 valence electrons.
₂₈Ni 1s²2s²2p⁶3s²3p⁶3d⁸4s².
₂₈Ni⁶⁺ 1s²2s²2p⁶3s²3p⁶3d⁴.
₂₆Fe 1s²2s²2p⁶3s²3p⁶3d⁶4s²
₂₆Fe⁶⁺1s²2s²2p⁶3s²3p⁶3d².
₂₇Co 1s²2s²2p⁶3s²3p⁶3d⁷4s²
₂₇Co⁶⁺ 1s²2s²2p⁶3s²3p⁶3d³.
₂₅Mn⁶⁺ 1s²2s²2p⁶3s²3p⁶3d¹.
Answer:
10.60 grams of silane gas are formed.
Explanation:
From the reaction:
Mg₂Si(s) + 4H₂O(l) → 2Mg(OH)₂(aq) + SiH₄(g)
We know that the limiting reactant is Mg₂Si, so to find the mass of SiH₄ formed we need to calculate the number of moles of Mg₂Si:

Where:
m: is the mass of Mg₂Si = 25.0 g
M: is the molar mass of Mg₂Si = 76.69 g/mol

Now, the stoichiometric relation between Mg₂Si and SiH₄ is 1:1 so:

Finally, the mass of SiH₄ is:

Therefore, 10.60 grams of silane gas are formed.
I hope it helps you!
<span>Uranium-236 is intermediate nuclei. created by fusion reactions an unstable isotope of uranium created from four hydrogen atoms used in the H-bomb.
Following is the reaction involved in above process:
</span>

+

→

→

+

+ 3

<span> + 177 MeV
</span>
Here,

= Fission material,

= projectile,

= intermediate nuclei,

and

= Fission product