The right<span> at +20.0 </span>cm/s makes<span> an </span>elastic head<span>-on </span>collision<span> with a 10.0 </span>g object<span> that </span>makes<span> an</span>elastic head<span>-on </span>collision<span> with a 10.0 </span>g object<span> that is </span>initially<span> at </span>rest<span>.(b) Find the fraction of the </span>initial<span>kinetic energy transferred to the 10.0 </span>g object<span>.of small </span>mass<span> before and </span>after collision; V=velocity<span> of big </span>mass after collision<span>.</span>
The following answers apply;
- Changes in magnetic properties of rock
- Decrease in well water levels
- Increases in radon gas in groundwater
- Foreshocks
These other choices may be good indicators of an imminent volcanic eruption;
Movement of magma
Increase in sulfur dioxide and carbon dioxide ground emissions
Answer:
Answer to the question:
Explanation:
Differences between ionic bond and covalent bond:
The ionic bond occurs between two different atoms (metallic and non-metallic), while the covalent bond occurs between two equal atoms (non-metallic).
In the covalent bond there is an electron compartment, while in the ionic bond there is an electron transfer.
Ionic bonds have a high melting and boiling point, while covalent bonds usually have a low point.
Answer:
q = square root (4KsL³/k)
The force of extension of the spring is equal to the force of repulsion between the two like charges. Two like charges(positive or negative) would always repel each other and two unlike charges would always attract each other. This electric force between the charges is what is responsible for the stretching of the spring. The electric force causes the spring to increase in length from L to 2L. Equating these forces, that is the electric force between the charges and the elastic force of the spring and rearranging the variables gives the expression to obtain q.
Explanation:
See the attachment below for full solution.
<span>We know that an object in moving with acceleration follow the rule according that
the distance covered will be : d = Vi*t + 1/2*a*t^2
where d is distance, Vi is initial speed, and a is acceleration
Then after 1 km which is 1000 metres we have:
1000 = Vi *71.2 + 1/2*0.0499*(71.2)^2
Vi = (1000-1/2*0.0499*(71.2)^2)/71.2 = 1000/71.2 - 1/2*0.0499*71.2 = 12.27 m/s
Then the car was going at 12.27 m/s when started to accelerate.</span>