Answer:
Dr = 263 10⁻⁶ m
Explanation:
The diffraction pattern for constructive interference is described by
a sin θ = m λ
in this it indicates that the order of diffraction is m = 1
Let's use a direct proportion rule to find the separation of two slits. If there are 600 lines in 1 me, what is the distance between 2 slits
a = 2 lines 1/600
a = 2/600
a = 3.33 10⁻³ mm = 3.33 10⁻⁴ cm
let's use trigonometry
tan θ = y / L
as the measured angles are small
tan θ = sin θ / cos θ sin θ
sin θ = y / L
we substitute
a y/L = λ
y = λ L / a
for λ = 400 10-9 m
I = 400 10⁻⁹ 2.9 / 3.33 10⁻³
i = 346.89 10⁻⁶ m
f
or λ = 700 nm
y_f = 700 10⁻⁻⁹ 2.9 / 3.33 10⁻³
y_f = 609.609 10⁻⁶ m
the separation of this spectrum
Δr = v_f - i
Dr = (609.609 - 346) 10 ⁻⁶
Dr = 263 10⁻⁶ m
The final speed of the nickel at the given quantity of heat is determined as 202.1 m/s.
<h3>Final speed of the nickel</h3>
Apply the principle of conservation of energy.
Q = mcΔθ
Q = (18)(0.444)(66 - 20)
Q = 367.63 J
Q = K.E = ¹/₂mv²
2K.E = mv²
v = √(2K.E/m)
where;
v = √(2 x 367.63)/(0.018))
v = 202.1 m/s
Learn more about speed here: brainly.com/question/4931057
#SPJ1
Answer:
A cosmic year is 365.25 days, some times called a side real year and is just the time it takes for us to go round the sun once.
A light year is the distance light travels in a year. Now light travels at about 186,262 miles a Second! Which is not slow by any ones book.
An experiment was conducted just after Christmas a few years ago. Two girls were selected from the audience and went into two phone boxes a few feet apart. They could only hear each other via the phones. The phone call went to a ground station about 200 miles away, then up to a geostationary coms satellite, back to a ground station 1/3 of the way around the world, then repeated, with a third satellite before being sent from another ground station back to London and the other phone box. We the audience could hear both sides of the conversation from both boxes. And could hear the delay between sending and receiving. So even at the speed of light, there was about 1.5 seconds of delay. So because distances in space are so vast that saying a star is x millions of miles away causes problems, you run out of zero’s! So our nearest other star is about 4.5 light years away. Our sun (our nearest start) is about 8 light minuets away. Varies slightly as our orbit is not 100% cirular.
I HOPE THIS IS HELPFUL.
Answer:
Explanation:
Given
Initial speed
distance traveled before coming to rest
using equation of motion
where v=final velocity
u=initial velocity
a=acceleration
s=displacement
for
using same relation we get
divide 1 and 2 we get
So a distance if 213.32 ft is required to stop the vehicle with 80 mph speed