1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
xxMikexx [17]
2 years ago
15

Why it is advise to clean the ends of connecting wires before connecting them?

Physics
2 answers:
densk [106]2 years ago
8 0
To avoid poor contact and consequently the increase of the electrical resistance at the junction.
Svetradugi [14.3K]2 years ago
5 0
If dirt and grease were good conductors of electrical current, then we could make wire
out of dirt and grease instead of expensive copper.  Sadly, they're not. So a coating of
dirt and grease on the wire can have a substantial impact on the connection, and can
even block the flow of current across the connection completely.  Moreover, in the case
where the ends of the wires are to be soldered, solder does not adhere to dirty wire.
You might be interested in
Ce unitate de masura are indicele de REFRACTIE?
ivolga24 [154]

Answer:se obesrva ca indicele de refractie NU are unitate de masura, este adimensional. Se exprima print-un raport, de exemplu 4/3, 1,5 etc.

Explanation:

3 0
2 years ago
Calculate the acceleration of a car that is maintaining a constant velocity of 1m/s
lora16 [44]
"Constant velocity" is another way of saying "zero acceleration".
5 0
3 years ago
Read 2 more answers
You are driving a car with an automatic transmission; the shifter is mounted on the steering column. When you press down on the
castortr0y [4]

Answer:

From the narrative in the question, there seem to have been a break failure and the ordered step of response to this problem is to

1) Put on the hazard light to inform other road users of a problem or potential fault with your car and so they should continue their journey with caution.

2) Avoid pressing on the acceleration pedal as this might cause the car to gradually slow down due to friction and gravity

3)Try navigate the car to the service lane. This is the less busy lane where cars are sometimes parked briefly.

4) Continuously pump the breaks to try stop the car. Continuously pumping the breaks might just help you build enough pressure to stop the car because often time, there are some pressure left in the break.

5) At this point, the speed of the car should be relatively slow. So at this point, you could try apply the emergency hand break. Do not pull the emergency hand breaks if the car is on high speed. Doing this may cause the car to skid off the road.

8 0
2 years ago
Can you explain that gravity pulls us to the Earth & can you calculate weight from masses on both on Earth and other planets
schepotkina [342]
I don't actually understand what your question is, but I'll dance around the subject
for a while, and hope that you get something out of it.

-- The effect of gravity is:  There's a <em>pair</em> of forces, <em>in both directions</em>, between
every two masses.

-- The strength of the force depends on the <em>product</em> of the masses, so it doesn't matter whether there's a big one and a small one, or whether they're nearly equal. 
It's the product that counts.  Bigger product ==> stronger force, in direct proportion.

-- The strength of the forces also depends on the distance between the objects' centers.  More distance => weaker force.  Actually, (more distance)² ==> weaker force.

-- The forces are <em>equal in both directions</em>.  Your weight on Earth is exactly equal to
the Earth's weight on you.  You can prove that.  Turn your bathroom scale face down
and stand on it.  Now it's measuring the force that attracts the Earth toward you. 
If you put a little mirror down under the numbers, you'll see that it's the same as
the force that attracts you toward the Earth when the scale is right-side-up.

-- When you (or a ball) are up on the roof and step off, the force of gravity that pulls
you (or the ball) toward the Earth causes you (or the ball) to accelerate (fall) toward the Earth. 
Also, the force that attracts the Earth toward you (or the ball) causes the Earth to accelerate (fall) toward you (or the ball).
The forces are equal.  But since the Earth has more mass than you have, you accelerate toward the Earth faster than the Earth accelerates toward you.

--  This works exactly the same for every pair of masses in the universe.  Gravity
is everywhere.  You can't turn it off, and you can't shield anything from it.

-- Sometimes you'll hear about some mysterious way to "defy gravity".  It's not possible to 'defy' gravity, but since we know that it's there, we can work with it.
If we want to move something in the opposite direction from where gravity is pulling it, all we need to do is provide a force in that direction that's stronger than the force of gravity.
I know that sounds complicated, so here are a few examples of how we do it:
-- use arm-muscle force to pick a book UP off the table
-- use leg-muscle force to move your whole body UP the stairs
-- use buoyant force to LIFT a helium balloon or a hot-air balloon 
-- use the force of air resistance to LIFT an airplane.

-- The weight of 1 kilogram of mass on or near the Earth is 9.8 newtons.  (That's
about 2.205 pounds).  The same kilogram of mass has different weights on other planets. Wherever it is, we only know one of the masses ... the kilogram.  In order
to figure out what it weighs there, we need to know the mass of the planet, and
the distance between the kilogram and the center of the planet.

I hope I told you something that you were actually looking for.
7 0
3 years ago
La ecuación de la posición de una esferita está dada por: r(t)=(2.Cos(πt) i-3.Sen(πt) j) (m) ¿Cuál es la velocidad de la esferit
katovenus [111]

Answer:

v = (-4.44 i^ + 6.66 j^ )  m/s, a_average =( 0 i^ -2π j^) m/s²

Explanation:

The expression left corresponds to an oscillatory movement (MAS), the speed is defined by

         v = dr / dt

the function of position

         r = 2 cos πt  i^  + 3 sin πt  j^

let us note that it is a movement in two dimensions

let's perform the derivative

          v = -2π sin πt  i^  + 3π cos πt  j^

we evaluate this expression for t = 0.25 s, remember that the angle is in radians

          v = -2π sin (π 0.25) i^ + 3π cos (π 0.25) j^

           v = (-4.44 i^ + 6.66 j^ )  m/s

To calculate the mean acceleration we use the expression

           a = (v_{f} - v_{o}) / Δt

 

indicates that the time is the first 3 s

       

we look for the initial velocity t = 0 s

           v₀ = 0 i ^ + 3π j ^

         

we look for the fine velocity, t = 3 s

          v_f = - 2π sin (π 3) + 3π cos (π 3) j ^

          v_f = 0 i ^ - 3π j ^

we calculate the average acceleration

            Δt = (3 -0) = 3 s

           a_average = (0-0) / 3 i ^ + (-3π - 3π) / 3

           a_average = (0 i ^ -2π j ^ ) m/s²

6 0
3 years ago
Other questions:
  • A light ray is incident on a mirror at an angle θ with respect to the normal. what is the direction of the reflected ray?
    6·1 answer
  • Ten students stand in a circle and are told to make a transverse wave. what best describes the motion of the students?
    6·2 answers
  • Which planet's gravitational pull is closest to that of Earth?
    7·1 answer
  • A ray of light is traveling in a glass cube that is totally immersed in water. you find that if the ray is incident on the glass
    11·1 answer
  • Intermolecular forces hold together which of the following?
    7·2 answers
  • A heat engine operating at steady state delivers a power output of 15.5 hp. The engine receives energy by heat transfer in the a
    7·1 answer
  • Ocean waves with a wavelength of 12.9 m are
    14·1 answer
  • Importance of international bureau of weights and measures Inthe world​
    13·1 answer
  • A proton and an electron are released from rest, with only the electrostatic force acting. Which of the following statements mus
    10·1 answer
  • If a car is moving at a constant velocity of 10 m/s, what is its acceleration?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!