Answer:
22.6According to the law of conservation of mass, the total mass of reactants should be equal to the total mass of products. Here, total mass of reactants= 11.3+11.3=22.6
•
• • Mass of Hcl produced=22.6 g
Answer:
is the solubility of nitrogen gas in a diver's blood.
Explanation:
Henry's law states that the amount of gas dissolved or molar solubility of gas is directly proportional to the partial pressure of the liquid.
To calculate the molar solubility, we use the equation given by Henry's law, which is:

where,
= Henry's constant = 
= partial pressure of nitrogen
(Raoult's law)



is the solubility of nitrogen gas in a diver's blood.
Answer:
0.5 M
Explanation:
From the question given above, the following data were obtained:
Mass of NaOH = 80 g
Volume of solution = 4 L
Molarity =?
Next, we shall determine the number of mole in 80 g of NaOH. This can be obtained as follow:
Mass of NaOH = 80 g
Molar mass of NaOH = 23 + 16 + 1
= 40 g/mol
Mole of NaOH =?
Mole = mass / molar mass
Mole of NaOH = 80 / 40
Mole of NaOH = 2 moles
Finally, we shall determine the molarity of the solution. This can be obtained as follow:
Mole of NaOH = 2 moles
Volume of solution = 4 L
Molarity =?
Molarity = mole / Volume
Molarity = 2/4
Molarity = 0.5 M
Therefore, the molarity of the solution is 0.5 M.
Although 1013.25 mb (760 mm Hg) is considered to be the standard atmospheric pressure at sea level, it does not mean that the pressure at this level has this value, actually this being 1011 mb.
Answer:
Explained below.
Explanation:
First of all, the orbital path of electron is mostly parabolic in electric field.
In an electric field, electrons behave very similar to a projectile. Thus, Electrons have a parabolic path in an electric field simply because the speed of the electrons in a direction which is perpendicular to the electric field is constant since there is no force. Therefore, there will be no acceleration along that perpendicular direction. However there will be an acceleration that is constant in the direction of the electric field which makes it act in a similar manner to a projectile under gravity.