Answer:
1. 2Al + Cl2 = Al2Cl2
2 TiCl4 + 2Na = Ti + 2NaCl2
3. H2O2 = H2O + O2
4. Na2S + 2HCl = H2S + 2NaCl
5. Mg(OH)2 + 2HCl = MgCl2 + 2H2O
1. 3O2 = 2O3
Answer:
In a compound, chemical energy is _____required__________ when bonds break.
Answer:
Its phosphorus (P)
Explanation:
In writing the electron configuration for Phosphorus the first two electrons will go in the 1s orbital. Since 1s can only hold two electrons the next 2 electrons for Phosphorous go in the 2s orbital. The next six electrons will go in the 2p orbital. The p orbital can hold up to six electrons. We'll put six in the 2p orbital and then put the next two electrons in the 3s. Since the 3s if now full we'll move to the 3p where we'll place the remaining three electrons. Therefore the Phosphorus electron configuration will be 1s22s22p63s23p3.
M IS A LETTER but N is a letter
To solve this we assume that the hydrogen gas is an
ideal gas. Then, we can use the ideal gas equation which is expressed as PV =
nRT. At a constant pressure and number of moles of the gas the ratio T/V is
equal to some constant. At another set of condition of temperature, the
constant is still the same. Calculations are as follows:
T1 / V1 = T2 / V2
V2 = T2 x V1 / T1
V2 = (100 + 273.15) K x 2.50 L / (-196 + 273.15) K
<span>V2 = 12.09 L</span>
Therefore, the volume would increase to 12.09 L as the temperature is increased to 100 degrees Celsius.
<span />