Answer:
(a) Pair 1: H₂S and HS⁻
Pair 2: NH₃ and NH₄⁺
(b) Pair 1: HSO₄⁻ and SO₄⁻
Pair 2: NH₃ and NH₄⁺
(c) Pair 1: HBr and Br⁻
Pair 2: CH₃O⁻ and CH₃OH
(d) Pair 1: HNO₃ and NO₃⁻
Pair 2: H₃O⁺
Explanation:
When an acid loses its proton (H⁺), a conjugate base is produced.
When a base accepts a proton (H⁺), it forms a conjugate acid.
(a) H₂S is an acid. When it loses a proton, it forms the conjugate base HS⁻.
NH₃ is a base. When NH₃ gains a proton, it forms the conjugate acid NH₄⁺
(b) The acid HSO₄⁻ loses a H⁺ ion and forms the conjugate base SO₄²⁻.
The base NH₃ accepts a H⁺ ion to form the conjugate acid NH₄⁺.
(c) HBr is an acid. When loses the H⁺ ion, it forms the conjugate base Br⁻.
CH₃O⁻ accepts a H⁺ ion to form the conjugate acid CH₃OH.
(d) HNO₃ loses a proton to form the conjugate base NO₃⁻.
H₂O gains a proton to form the conjugate acid H₃O⁺.
Answer:
2.4 mole of oxygen will react with 2.4 moles of hydrogen
Explanation:
As we know
1 liter = 1000 grams
2H2 + O2 --> 2H2O
Weight of H2 molecule = 2.016 g/mol
Weight of water = 18.01 gram /l
2 mole of oxygen react with 2 mole of H2
2.4 mole of oxygen will react with 2.4 moles of hydrogen
So to solve this you need to know Charles’s law which is: V1/T1=V2/T2. Where T1 and V1 is the initial volume and Temperature and V2 and T2 is the temperature and volume afterwards. So first plug in the numbers you are given. V1= 1.55L T1= 32C° V2= 755mL T2=?. Since your volumes are two different units you change 755mL to be in L so that would be 0.755 L. And since your temp isn’t in Kelvin you do 273+32= 305K°. You then would rearrange your equation to solve for T2 which is V2T1/V1. Then you plug in your numbers (0.755L)(305K)/1.55L. Then you solve and would be 148.5645161 —> 1.49 x 10^2 K
Answer:
The absorbance of the myoglobin solution across a 1 cm path is 0.84.
Explanation:
Beer-Lambert's law :
Formula used :



where,
A = absorbance of solution
c = concentration of solution
= Molar absorption coefficient
l = path length
= incident light
= transmitted light
Given :
l = 1 cm, c = 1 mg/mL ,
Molar mass of myoglobin = 17.8 kDa = 17.8 kg/mol=17800 g/mol
(1 Da = 1 g/mol)
c = 1 mg /mL = 

1 mg = 0.001 g, 1 mL = 0.001 L


The absorbance of the myoglobin solution across a 1 cm path is 0.84.
Answer:
7.3 atm
Explanation:
- Use the formula P1V1 = P2V2
- Rearrange formula and then plug in values.
- Hope this helped! Let me know if you need more help or a further explanation.