Answer:

Explanation:
The symbol for TIN is Sn.
When Sn loses 2 electrons, it gets a double positive charge ( +2 ) and becomes
.
It becomes a cation.
The name of Ion is Tin ( II ) Ion.
![\rule[225]{225}{2}](https://tex.z-dn.net/?f=%5Crule%5B225%5D%7B225%7D%7B2%7D)
Hope this helped!
<h3>~AH1807</h3>
Answer:
1.23 M
Explanation:
Molarity of a substance , is the number of moles present in a liter of solution .
M = n / V
M = molarity
V = volume of solution in liter ,
n = moles of solute ,
Moles is denoted by given mass divided by the molecular mass ,
Hence ,
n = w / m
n = moles ,
w = given mass ,
m = molecular mass .
From the question ,
w = given mass of NaCl = 7.2 g
As we know , the molecular mass of NaCl = 58.5 g/mol
Moles is calculated as -
n = w / m = 7.2 g / 58.5 g/mol = 0.123 mol
Molarity is calculated as -
V = 100ml = 0.1 L (since , 1 ml = 1/1000L )
M = n / V = 0.123 mol / 0.1 L = 1.23 M
Answer:
\frac{dh}{dt}_{h=2cm} =\frac{40}{9\pi}\frac{cm}{2}
Explanation:
Hello,
The suitable differential equation for this case is:

As we're looking for the change in height with respect to the time, we need a relationship to achieve such as:

Of course,
.
Now, since the volume of a cone is
and the ratio
or
, the volume becomes:

We proceed to its differentiation:

Then, we compute 

Finally, at h=2:

Best regards.
Answer : Option (A) Accelerator 2 model has the lowest percentage of energy lost as waste.
Solution : Given,
For Accelerator 1 model,
Input energy = 2078.3 J
Wasted energy = 663.1 J
Output energy = 1415.2 J
For Accelerator 2 model,
Input energy = 7690.0 J
Wasted energy = 2337.5 J
Output energy = 5353.5 J
For Accelerator 3 model,
Input energy = 4061.9 J
Wasted energy = 2259.6 J
Output energy = 1802.3 J
Formula used for lowest percentage of energy lost as waste is:
% energy lost as waste = (Total energy wasted / Total input energy ) × 100
For Accelerator 1 model,
% energy lost as waste =
= 31.90%
For Accelerator 2 model,
% energy lost as waste =
= 30.39%
For Accelerator 3 model,
% energy lost as waste =
= 55.62%
So, we conclude that the Accelerator 2 model has the lowest percentage of energy lost as waste.