The wavelength of the third resonance of the closed organ pipe is equal to the ratio between the speed of sound and the frequency of the 3rd harmonic:

The relationship between length of a closed pipe and wavelength of the standing waves inside is:

where n is the number of the harmonic. In this case, n=3, so the length of the pipe is

Answer:
<u>20 Minutes</u>
<u></u>
Explanation:
Well we know Mph (Miles per hour) is distance over time : 
R (rate) = 60
d (distance) = 20
t (time) = Unknown
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
R =
↓
60 =
↓
t = 
↓
t =
or 0.3333
<em>So basically it would take one third of an hour. Lets change these units to minutes.</em>
60 * 0.333333 = 20
<em>So it would take you </em><u><em>20 minutes</em></u><em> to drive 20 miles on a bus that drives 60 mph</em>
<em />
Hope that helps
<em>~Siascon~</em>
Answer: 27 joules
Explanation:
Work is done when force is applied on the bench over a distance. it is measured in joules.
Workdone = force x distance
= 45 N x 0.6 metres
= 27 joules
Thus, 27 joules of work is done on the bench.
Answer:
4 A
Explanation:
We are given that

I=12 A
We have to find the current flowing through each resistor.
We know that in parallel combination current flowing through different resistors are different and potential difference across each resistor is same.
Formula :

Using the formula



Substitute the values



Hence, current flows through any one of the resistors is 4 A.
<span>3.2x10^-2 seconds (0.032 seconds)
This is a simple matter of division. I also suspect it's an exercise in scientific notation, so here is how you divide in scientific notation:
9.6 x 10^6 m / 3x10^8 m/s
First, divide the significands like you would normally.
9.6 / 3 = 3.2
And subtract the exponent. So
6 - 8 = -2
So the answer is 3.2 x 10^-2
And since the significand is less than 10 and at least 1, we don't need to normalize it.
So it takes 3.2x10^-2 seconds for the radio signal to reach the satellite.</span>