The trickiest part of this problem was making sure where the Yakima Valley is.
OK so it's generally around the city of the same name in Washington State.
Just for a place to work with, I picked the Yakima Valley Junior College, at the
corner of W Nob Hill Blvd and S16th Ave in Yakima. The latitude in the middle
of that intersection is 46.585° North. <u>That's</u> the number we need.
Here's how I would do it:
-- The altitude of the due-south point on the celestial equator is always
(90° - latitude), no matter what the date or time of day.
-- The highest above the celestial equator that the ecliptic ever gets
is about 23.5°.
-- The mean inclination of the moon's orbit to the ecliptic is 5.14°, so
that's the highest above the ecliptic that the moon can ever appear
in the sky.
This sets the limit of the highest in the sky that the moon can ever appear.
90° - 46.585° + 23.5° + 5.14° = 72.1° above the horizon .
That doesn't happen regularly. It would depend on everything coming
together at the same time ... the moon happens to be at the point in its
orbit that's 5.14° above ==> (the point on the ecliptic that's 23.5° above
the celestial equator).
Depending on the time of year, that can be any time of the day or night.
The most striking combination is at midnight, within a day or two of the
Winter solstice, when the moon happens to be full.
In general, the Full Moon closest to the Winter solstice is going to be
the moon highest in the sky. Then it's going to be somewhere near
67° above the horizon at midnight.
Answer:
The deformation is 0.088289 m
The final height of the monument is 170-0.088289 = 169.911702 m
Explanation:
Thermal coefficient of marble varies between (5.5 - 14.1) ×10⁻⁶/K = α
So, let us take the average value
(5.5+14.1)/2 = 9.8×10⁻⁶ /K
Change in temperature = 35-(-18) = 53 K = ΔT
Original length = 170 m = L
Linear thermal expansion

The deformation is 0.088289 m
The final height of the monument is 170-0.088289 = 169.911702 m (subtraction because of cooling)
Don't listen to the other guy I just took the test and got it wrong because of him..
I re-took it and the correct answer is
A) Safety Data Sheets (SDS)
Answer:
Atomic mass is defined as the number of protons and neutrons in an atom, where each proton and neutron has a mass of approximately 1 amu (1.0073 and 1.0087, respectively). The electrons within an atom are so miniscule compared to protons and neutrons that their mass is negligible.
I hope this is the answer you were looking for :D
Your diagram should include four forces:
• the box's weight, pointing down (magnitude <em>w</em> = 43.2 N)
• the normal force, pointing up (mag. <em>n</em>)
• the applied force, pointing the direction in which the box is sliding (mag. <em>p</em> = 6.30 N, with <em>p</em> for "pull")
• the frictional force, pointing oppoiste the applied force (mag. <em>f</em> )
The box is moving at a constant speed, so it is inequilibrium and the net forces in both the vertical and horizontal directions sum to 0. By Newton's second law, we have
<em>n</em> + (-<em>w</em>) = 0
and
<em>p</em> + (-<em>f</em> ) = 0
So then the forces have magnitudes
<em>w</em> = 43.2 N
<em>n</em> = <em>w</em> = 43.2 N
<em>p</em> = 6.30 N
<em>f</em> = <em>p</em> = 6.30 N