Answer:
F = 39.36 N
Explanation:
given,
initial speed, u = 38 m/s
final speed, v = 0 m/s
mass of ball = 0.145 Kg
time, t = 0.14 s
Force = ?
using impulse formula
J = change in momentum
J = F x t
m(v - u) = F x t
0.145 x (0 - (-38)) = F x 0.14
F x 0.14 = 5.51
F = 39.36 N
force exerted by the ball is equal to 39.36 N.
When light passes from one medium to another, part of it continues on
into the new medium, while the rest of it bounces away from the boundary,
back into the first medium.
The part of the light that continues on into the new medium is <em>transmitted</em>
light. Its forward progress at any point in its journey is <em>transmission</em>.
Its direction usually changes as it crosses the boundary. The bending is <em>
refraction</em>.
The part of the light that bounces away from the boundary and heads back
into the first medium is <em>reflected</em> light. The process of bouncing is <em>reflection</em>.
this atom has nine electrons
Explanation:
since electrons are found outside the nucleus of an atom and they are negatively charged
The evidence of this research is published in the scientific journal Nature communication.
<u>Explanation:</u>
Our solar system shaped about 4.5 billion years prior from a thick haze of interstellar gas and residue. The cloud crumbled, potentially due to the shock wave of a close by detonating star, called a supernova. At the point when this residue cloud crumbled, it framed a sun powered cloud—a turning, whirling plate of material.
The research is distributed in the latest issue of journal Nature Communications. About 4.6 billion years prior, a haze of gas and residue that in the end framed our nearby planetary group was upset. The following gravitational breakdown framed the proto-Sun with an encompassing plate where the planets were conceived.
You're hearing a higher frequency than the sound that's actually coming from the siren on the ambulance, so it must be moving TOWARD you.