Answer:
what help you need?????????
Answer:
27.22 m/s
Explanation:
Let the speed of clay before impact is u.
the speed of clay and target is v after impact.
use conservation of momentum
momentum before impact momentum after impact
mass of clay x u = (mass of clay + mass of target) x v
100 x u = (100 + 500) x v
u = 6 v .....(1)
distance, s = 2.1 m
μ = 0.5
final velocity is zero. use third equation of motion
v'² = v² + 2as
0 = v² - 2 x μ x g x s
v² = 2 x 0.5 x 9.8 x 2.1 = 20.58
v = 4.54 m/s
so by equation (1)
u = 6 x 4.54 = 27.22 m/s
thus, the speed of clay before impact is 27.22 m/s.
Answer:
B) 3.50 m/s
Explanation:
The linear velocity in a circular motion is defined as:

The angular frequency (
) is defined as 2π times the frequency and r is the radius, that is, the distance from the center of the circular motion.

Replacing (2) in (1):

We have to convert the frequency to Hz:

Finally, we calculate how fast is the child moving:

Answer:
i don't know if this is good for you but
Explanation:
ignoring frictional air resistance (drag) the speed on return is the same as when it left the ground (5 m/s but in the opposite direction).
Note: this points out a good reason for not firing live bullets into the air..they will return somewhere and at the same speed.
However, if you take into account the atmospheric drag the reurn speed will be somewhat smaller (but in the case of a bullet, probably still lethal.) Drag depends on many factors and is difficult to calculate.
Answer:
A. The upward pressure gradient force is balanced by gravity.
Explanation:
A. is correct because the pressure difference is actually generated by gravity. As in the following formula for the pressure at different points:

where
are the pressure at 2 points, ρ is the density of the fluid, g is the gravitational constant, and h is the height difference.
B is incorrect because friction in air is too small to make an effect.
C is incorrect because the Coriolis force is horizontal, not vertical.
D is incorrect because a difference of 500 hPa = 50000 Pa, this is half of the atmospheric pressure.
E is incorrect because temperature cannot generate force.