1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
svp [43]
3 years ago
11

A block of cheese is pulled on by a string and slides to the right along a rough surface.

Physics
1 answer:
Ulleksa [173]3 years ago
3 0

Answer:

Explanation:

KHAN ACADEMY

You might be interested in
The movement of electricity is called?
stira [4]
It's commonly referred to as an electric current.
5 0
3 years ago
The most common isotope of hydrogen contains a proton and an electron 'separated by about -11-27 5.0 x 10 m. The mass of proton
Brrunno [24]

Answer:

A)   F_g = 4.05 10⁻⁴⁷ N, B)   F_e = 9.2 10⁻⁸N, C)    \frac{F_e}{F_g} = 2.3 10³⁹

Explanation:

A) It is asked to find the force of attraction due to the masses of the particles

Let's use the law of universal attraction

            F = G \frac{m_1m_2}{r^2}

let's calculate

            F = 6.67 \ 10^{-11} \ \frac{9.1 \ 10^{-31} \ 1.67 \ 10 ^{-27} }{(5 \ 10^{-11})^2 }

            F_g = 4.05 10⁻⁴⁷ N

B) in this part it is asked to calculate the electric force

Let's use Coulomb's law

            F = k \  \frac{q_1q_2}{r^2}

let's calculate

            F = 9 \ 10^9 \  \frac{(1.6 \ 10^{-19} )^2}{(5 \ 10^{-11})^2}

             F_e = 9.2 10⁻⁸N

C) It is asked to find the relationship between these forces

        \frac{F_e}{F_g} = \frac{9.2 \ 10^{-8} }{4.05 \ 10^{-47} }

        = 2.3 10³⁹

therefore the electric force is much greater than the gravitational force

4 0
3 years ago
Allyson and Adrian have decided to connect their ankles with a bungee cord; one end is tied to each person's ankle. The cord is
Damm [24]

Complete question is;

Allyson and Adrian have decided to connect their ankles with a bungee cord; one end is tied to each person's ankle. The cord is 40 feet long, but can stretch up to 120 feet. They both start from the same location. Allyson moves 10 ft/sec and Adrian moves 9 ft/sec in the directions indicated. Adrian stops moving at time t = 5.5 sec, but Allyson keeps on moving 10 ft/sec in the indicated direction. (If a coordinate system is used, assume that the girls' starting position is located at

(x, y) = (0, 0) and that Allyson and Adrian move in the positive y and negative x directions, respectively. Let one unit equal one foot.)

Compute the length of the bungee cord at t = 7 seconds. (Round your answer to three decimal places.)

Answer:

Length of bungee cord = 85.734 ft

Explanation:

We are told that Adrian moves 9ft/sec. Thus, at 5.5 seconds, distance he moved is; 9 ft/sec × 5.5sec = 49.5 ft in the negative x (-x) direction. Therefore, the coordinate is (-49.5, 0).

Now, Allyson has moved 10ft/sec. Thus, at 7 seconds, distance he moved would be; 10 ft/sec x 7sec = 70 feet in the positive (+y) direction. Therefore, the coordinate is (0, 70).

Now, since they started from the origin, it means (0, 0) is a coordinate. Thus, we now have 3 coordinates which are; (0, 0), (0, 70) & (-49.5,0). These 3 coordinates would therefore combine to form a right triangle.

The hypotenuse is the distance between Allyson and Adrian.

Thus, from pythagoras theorem, we can find the distance between them which is same as the length of the cord.

Thus;

(-49.5)² + 70² = D².

D² = 2450.25 + 4900

D = √7350.25

D = 85.734 ft

4 0
3 years ago
According to the first rule, if a force pulls on one end of a rope, the tension in the rope equals the magnitude of the pulling
mixer [17]

Answer:

F.

Explanation:

Here in the question the mass of the pulley is zero, hence, the tension in the cable throughout is same.

magnitude of tension in rope 1 is

T1= F

Hence the tension T1 is rope 1 is F.

5 0
3 years ago
Read 2 more answers
A sample of copper has a volume of 23.4 cm3 if the density of copper is 8.9 gcm3 what is the coppers mass?
murzikaleks [220]
The answer is:  " 208 g " .
_____________________________________________
Explanation:
__________________________________________
The formula/ equation for density is:
__________________________________________
D = m / V  ;  That is,  "mass divided by volume" ;
 
Density is expressed as:
__________________________________________    
                   "mass per unit volume";  in which the "mass" is expressed in units of "g" ("grams") ;  and the "unit volume" is expressed in units of:
    "cm³ " or "mL"; 
_____________________________________________
           {Note the exact equivalent:  1 cm³ = 1 mL }.
____________________________________________
         →  The formula is:  " D = m / V "  ; 
___________________________________________
   in which:

     "D" refers to the "density" (see above), which is: "8.9 g/cm³ " (given); 

     "m" refers to the "mass" , in units of "g" (grams), which is unknown; and we want to find this value;
                 
     "V" refers to the "volume", in units of "cm³ " ;
               which is:  "23.4 cm³ " (given);
_________________________________________________
                 We want to find the mass, "m" ; so we take the original equation/formula for the density:
_________________________________________________ 
              D  =  m / V ; 
_________________________________________________________
             And we rearrange; to isolate "m" (mass) on ONE side of the    equation; and then we plug in our known/given values;
 to solve for "m" (mass);  in units of "g" (grams) ;
___________________________________________________
    Multiply each side of the equation by "V" ; 
____________________________________________________
             V * { D  =  m / V } ;  to get:
____________________________________________________
      V * D = m ;   ↔   m = V * D ;
___________________________________________________
           Now, we plug in the given values for "V" (volume) and "D" (density) ;     to solve for the mass, "m" ;
______________________________________________________
           m  =  V * D ;
 
           m  =  (23.4 cm³) * (8.9 g / 1 cm³)  = (23.4 * 8.9) g = 208.26 g ;
  
 →  Round to "208 g" (3 significant figures);  
____________________________________
The answer is:  " 208 g " .
_____________________________________________________
7 0
3 years ago
Other questions:
  • A 55 newton force applied on an object moves the object 10 meters in the same direction as the force. What is the value of work
    8·2 answers
  • Describe how Ridge Push drives plate motion and discuss how it works to move Earth’s plates
    13·1 answer
  • What is the force on a 15.5 kg ball that is falling freely due to the pull of gravity
    14·1 answer
  • A swing oscillates 8 times in 12 seconds<br><br> what is its period<br><br> what is its frequency
    6·1 answer
  • Which of the following statements is true about the potential energy found in fossil fuels?
    14·1 answer
  • Define Newton's third law:
    15·1 answer
  • Betty is sitting on of her surfboard out in the ocean. She is waiting for the perfect wave to come along so she can ride in it t
    8·1 answer
  • IF YOU MOVE 50 METERS IN TO SECONDS,
    6·1 answer
  • the electric charge remains at rest in a. static electricity, b. current electricity, c. none of these​
    14·1 answer
  • A straight line with a positive slope on a velocity-time graph indicates which of the following?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!