1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
svp [43]
3 years ago
11

A block of cheese is pulled on by a string and slides to the right along a rough surface.

Physics
1 answer:
Ulleksa [173]3 years ago
3 0

Answer:

Explanation:

KHAN ACADEMY

You might be interested in
4. The bar has cross-sectional area A and modulus of elasticity E. If an axial force F directed toward the right is applied at C
aniked [119]

Answer:

a)  ΔL/L = F / (E A),  b)   L_{f} = L (1 + L F /(EA) )

Explanation:

Let's write the formula for Young's module

     E = P / (ΔL / L)

Let's rewrite the formula, to have the pressure alone

    P = E ΔL / L

The pressure is defined as

    P = F / A

Let's replace

   F / A = E ΔL / L

   F = E A ΔL / L

   ΔL / L = F / (E A)

b) To calculate the elongation we must have the variation of the length, so the length of the bar must be a fact. Let's clear

    ΔL = L [F / EA]

    L_{f} -L = L (F / EA)

    L_{f} = L + L (F / EA)

    L_{f} = L (1 + L (F / EA))

4 0
3 years ago
A 0.01-kg object is initially sliding at 9.0 m/s. It goes up a ramp (increasing its elevation by 1.5 m), and then moves horizont
barxatty [35]

Answer:

During this motion, 0.133 J of heat energy was created

Explanation:

Hi there!

Let´s calculate the energy of the object in each phase of the motion.

At first, the object has only kinetic energy (KE):

KE = 1/2 · m · v²

Where:

m = mass of the object.

v = velocity.

KE = 1/2 · 0.01 kg · (9 m/s)²

KE = 0.405 J

When the object goes up the ramp, it gains some gravitational potential energy (PE). Due to the conservation of energy, the object must convert some of its kinetic energy to obtain potential energy. By calculating the potential energy that the object acquires, we can know the loss of kinetic energy:

PE = m · g · h

Where:

m = mass of the object.

g = acceleration due to gravity (9.81 m/s²)

h = height.

PE = 0.01 kg · 9.81 m/s² · 1.5 m

PE = 0.147 J

The object "gives up" 0.147 J of kinetic energy to be converted into potential energy.

Then, after going up the ramp, the kinetic energy of the object will be:

0.405 J - 0.147 J = 0.258 J

When the object reaches the spring, kinetic energy is used to compress the spring and the object obtains elastic potential energy (EPE). Let´s calculate the EPE obtained by the object:

EPE = 1/2 · k · x²

Where:

k = spring constant.

x = compression of the spring

EPE = 1/2 · 100 N/m · (0.05 m)² = 0.125 J

Then, only 0.125 J of kinetic energy was converted into elastic potential energy. The object is at rest at the end of the motion, i.e., the object does not have kinetic energy when it compresses the spring by 5.0 cm. Since energy can´t be lost, the rest of the kinetic energy, that was not used to compress the spring, had to be converted into heat energy:

Heat energy = initial kinetic energy - obtained elastic potential energy

Heat energy = 0.258 J - 0.125 J = 0.133 J

During this motion, 0.133 J of heat energy was created.

7 0
3 years ago
You have a chart that illustrates a series of species with their common ancestor. This chart is a
emmasim [6.3K]
The answer is *C. Cladogram*.
8 0
3 years ago
A body is accelerated continuously. What is the form of the graph
Andrej [43]

Answer:

If a body is constantly accelerating the graph would be one-quadrant

4 0
3 years ago
A rubber ball and a lump of clay have equal mass. They are thrown with equal speed against a wall. The ball bounces back with ne
gregori [183]

Answer:

The ball experiences the greater momentum change

Explanation:

The momentum change of each object is given by:

\Delta p = m \Delta v= m (v-u)

where

m is the mass of the object

v is the final velocity

u is the initial velocity

Both objects have same mass m and same initial velocity u. So we have:

- For the ball, the final velocity is

v=-u

Since it bounces back (so, opposite direction --> negative sign) with same speed (so, the magnitude of the final velocity is still u). So the change in momentum is

\Delta p=m(v-u)=m((-u)-u)=-2mu

- For the clay, the final velocity is

v=0

since it sticks to the wall. So, the change in momentum is

\Delta p = m(v-u)=m(0-u)=-mu

So we see that the greater momentum change (in magnitude) is experienced by the ball.

3 0
3 years ago
Other questions:
  • According to the kinetic theory, all matter is composed of _______.
    11·2 answers
  • If the accuracy in measuring the position of a particle increases, the accuracy in measuring its velocity will
    11·1 answer
  • A ball is dropped from the top of a tall building. As the ball falls, the upward force of air rsistance becomes equal to the dow
    12·1 answer
  • A tension-force replaces what objects when creating a Free Body Diagram?
    5·1 answer
  • A tree frog leaping upward off the tree branch is pulled downward by
    11·1 answer
  • I need help with these questions please help <br><br><br> 25 points
    5·1 answer
  • The total charge a battery can supply is rated in mA⋅hmA⋅h, the product of the current (in mA) and the time (in h) that the batt
    9·1 answer
  • I need the answers ASAP.
    5·1 answer
  • The brakes on your automobile are capable of creating a deceleration of 5.0 m/s2. If you are going 135 km/h and suddenly see a s
    10·1 answer
  • A plane leaves with an acceleration of 6.34 m/s squared and takes 1.5 hours to stop. What is the speed of the plane? What was th
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!