1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elden [556K]
3 years ago
12

Two electrons travel towards each other at 0.2 c parallel to the laboratory x-axis. What is the relative velocity of one electro

n with respect to the other? What is the relative velocity of the two electrons with respect to the lab?
Physics
1 answer:
Leya [2.2K]3 years ago
5 0

1) In the reference frame of one electron: 0.38c

To find the relative velocity of one electron with respect to the other, we must use the following formula:

u'=\frac{u-v}{1-\frac{uv}{c^2}}

where

u is the velocity of one electron

v is the velocity of the second electron

c is the speed of light

In this problem:

u = 0.2c

v = -0.2c (since the second electron is moving towards the first one, so in the opposite direction)

Substituting, we find:

u'=\frac{0.2c+0.2c}{1+\frac{(0.2c)(0.2c)}{c^2}}=\frac{0.4c}{1+0.04}=0.38c

2) In the reference frame of the laboratory: -0.2c and +0.2c

In this case, there is no calculation to be done. In fact, we are already given the speed of the two electrons; we are also told that they travel in opposite direction, so their velocities are

+0.2c

-0.2c

You might be interested in
1. Explain who is doing more work and why: a bricklayer carrying bricks and placing them on the wallof a building being
Basile [38]
Both are doing because they have chorus
7 0
2 years ago
What's 600,000,000 divided by 3,000.000,000,000?
Murljashka [212]

Answer:0.000002

Explanation: I Looked It Up lol

5 0
3 years ago
For each of the following pairs of gas properties, describe the relationship between the properties, describe a simple system th
asambeis [7]

Answer:

For  each pair of properties of a gas, the relationships are (see the explanation for the description of the systems):

  1. (a) Volume and pressure: The relationship between them is inversely proportional.
  2. (b) Pressure and temperature: They have a directly proportional relationship.
  3. (c) Volume and temperature: They relationship is directly proportional.
  4. (d) Number of gas particles and pressure: The relationship is directly proportional between them.

Explanation:

1. Volume and pressure (temperature and amount of particles constant):

They have an inversely proportional relationship, because <em>if volume is reduced, the pressure increases, or if the volume increases, the pressure decreases</em>.

A simple system could be one similar to the one used by Boyle to test this relationship:

  • Seal the short extreme of a translucent J tube. It could be glass or plastic.
  • Put some water on it. As much as needed to have both sides of the tube filled.
  • Using a syringe, and a flexible small tube,inject a determined volume of air in the bottom in a way that the bubble is trapped in the seal side of the J tube.
  • Then if more water is added to the tube, it will increase the pressure (from the pressure definition is possible to in the trapped air, and is possible to measure the compression of the air bubble. The same is possible if using the syringe, and the flexible tube, some water is removed, and the increasing of volume could be observed.

2. Pressure and temperature (volume and amount of particles of the gas remains constant)

They have a directly proportional relationship, because <em>if temperature is reduced, the pressure decreases, or if the temperature increases, the pressure would increase, also</em>.

A simple system to show this is two cans of soda.

  • The can is rigid, so the volume is always constant, and the amount of gas inside the soda is the same.
  • Put one can under the sun, and the other in the cooler.
  • After a while, take it out the can in the cooler, and open both cans.
  • The one that was under the sun will "explode", in other words, it will liberate a lot of foam of gas and soda, meaning that the pressure inside the can was high.
  • The one that was in te cooler, won't liberate any foam, meaning that the pressure was low.

3. Volume and temperature (pressure and amount of particles of the gas remains constant)

They have a directly proportional relationship, because <em>if temperature is reduced, the pressure decreases, or if the temperature increases, the pressure will increase, also</em>.

A simple system to show this is a party balloon.

  • Fill the party balloon with some air, not enough to be close to explode, but enough to have it of a medium size. Tie the filling hole of the balloon.
  • The air inside the balloon would be at the same pressure than the atmosphere around it, so always will be at this pressure, and the close hole ensure that it has always the same amount of air inside.
  • Now is possible to use some heat source, for example as a hair dryer to increase the temperature of the balloon and its contents. The size of the balloon will increase. Then using water is possible to cool it down and watch how its size decreases.

4. Number of gas particles and pressure (volume and temperature of gas remains constant)

They have a directly proportional relationship, because <em>if the amount of gas particles is reduced, the pressure decreases, or if quantity of gas particles increases, the pressure will increase, also</em>.

A simple system to show this would be a bicycle tire:

  • The tire is rigid, so its volume is essentially constant, and the temperature would remains the same if not moving or driving it.
  • Using a tire gauge, it is possible to know the manometric pressure inside the tire, that is the difference between the actual pressure inside the tire and the atmospheric pressure.
  • Then each time that using an air pump some air is injected in the tire, it si possible to check the pressure inside it using the gauge, and observe how is increasing.
  • Also, is possible to open the valve, to allow some air to escape, then use the gauge to observe how the pressure decreases.

7 0
3 years ago
You sit at the middle of a large turntable at an amusement park as it is set spinning on nearly frictionless bearings, and then
jolli1 [7]

Answer:

Decrease

Explanation:

If you crawl to the rim the rotational speed will decrease. The law of conservation of angular momentum supports this answer. And it states that :

"When the net external torque acting on a system about a given axis is. zero , the total angular momentum of the system about that axis remains constant."

3 0
3 years ago
A dolphin swims 56 meters in 8 seconds and a walrus swims 30 meters in 6 seconds. Which is one has the faster speed, the dophin
Natali [406]

Answer:

dolphin= 7 meters/1 second      walrus= 5 meters/1 second

Explanation:

56 divided by 8 is 7

30 diviided by 6 is 5

5 0
3 years ago
Other questions:
  • A ball with a horizontal speed of 1.0m/s rolls off a bench 2.0 m high. (a) how long will the ball take to reach the floor? (b) h
    8·1 answer
  • The value of x in the diagram is ___ °.<br><br> 40<br> 50<br> 90<br> 180
    9·1 answer
  • A helicopter carrying supplies is traveling eastward, 80.0 m off the ground, at a speed of 40.0 m/s. The supplies are to be drop
    12·1 answer
  • What is the wavelength of an earthquake wave if it has a speed of 9 km/s and a frequency of 2 Hz?
    10·1 answer
  • Nutritionists use the ______ to measure how much energy we get from foods.
    9·2 answers
  • A skater extends her arms horizontally, holding a 5-kg mass in each hand. She is rotating about a vertical axis with an angular
    10·2 answers
  • Which option below describes the main difference between analog and digital technology?
    7·1 answer
  • When does the moon lie between earth and sun
    12·2 answers
  • You accidentally drop an eraser out of the window of an apartment 15 m above the ground
    10·1 answer
  • exhibit 6-5 the weight of items produced by a machine is normally distributed with a mean of 8 ounces and a standard deviation o
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!