Answer:
V₂ =31.8 mL
Explanation:
Given data:
Initial volume of gas = 45 mL
Initial temperature = 135°C (135+273 =408 K)
Final temperature = 15°C (15+273 =288 K)
Final volume of gas = ?
Solution:
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 45 mL × 288 K / 408 k
V₂ = 12960 mL.K / 408 K
V₂ =31.8 mL
Step one calculate the moles of each element
that is moles= % composition/molar mass
molar mass of Ca = 40g/mol, S= 32 g/mol , O= 16 g/mol
moles of Ca = 29.4 /40g/mol=0.735 moles, S= 23.5/32 =0.734 moles, O= 47.1/16= 2.94 moles
calculate the mole ratio by dividing each mole with smallest mole that is 0.734
Ca= 0.735/0.734= 1, S= 0.734/0.734 =1, O = 2.94/ 0.734= 4
therefore the emipical formula = CaSO4
B is correct. Molecules move faster when they are hotter because they have more energy. You can notice this change with your naked eye. Molecules in solids don't move. They have barely any energy. Hope this helps! ;)
<span><span>V. C. Wynne-Edwards and Konrad Lorenz were
the first authors to raise the concept of
altruism</span><span>. This was later
reiterated by </span>David Sloan Wilson, E. O. Wilson and Elliott Sober<span> in 1994 whose works referred to social organisms such as ants</span></span>.
Answer:
light energy to convert carbon dioxide and water into glucose and oxygen gas. Each molecule of glucose essentially “stores” up to 38 molecules of ATP which can be broken down and used during other cellular reactions.
Explanation: