Answer: C-N(Longest) > C=N > CN(C triple bond N, shortest)
Explanation: Bond length is the distance between nuclei of bonded atoms.
Bond energy is the which needs to break the bond.
And bond length is always inversily proportional to bond energy.
Larger the bond energy ,shorter the bond length
Answer: The volume of 0.684 mol of carbon dioxide at s.t.p. is 15.3 L
Explanation:
According to ideal gas equation:

P = pressure of gas = 1 atm (at STP)
V = Volume of gas = ?
n = number of moles = 0.684
R = gas constant = 
T =temperature =
(at STP)



Thus the volume of 0.684 mol of carbon dioxide at s.t.p. is 15.3 L
We are given the number of moles of solid magnesium supplied for the reaction which is 0.02 moles while hydrochloric acid is supplied in excess thus we can say that the reaction proceeds to completion. Calculation is as follows:
0.020 mol Mg ( 1 mol H2 / 1 mol Mg ) = 0.020 mol H2 gas is produced
To convert the number of moles to volume, we use the conditions at STP of 1 mol of a substance is equal to 22.4 L. Thus,
0.020 mol H2 (22.4 L / 1 mol) (1000 mL / 1 L) = 448 mL
Answer:
k = 4,92x10⁻³
Explanation:
For the reaction:
AB₂C (g) ⇄ B₂(g) + AC(g)
The equilibrium constant, k is defined as:
<em>(1)</em>
Molar concentration of the species are:
[AB₂C]: 0,0840mol / 5L = <em>0,0168M</em>
[B₂]: 0,0350mol / 5L = <em>0,0070M</em>
[AC]: 0,0590mol / 5L = <em>0,0118M</em>
Replacing this values in (1):
<em>k = 4,92x10⁻³</em>
I hope it helps!
Microchips I know for sure and some types of glass