Proton:
Positive
Found in Nucleus
Mass of 1 AMU
Neutron:
Neutral
Found in Nucleus
Mass of 1 AMU
Electron:
Negative
Found in orbitals
Mass of 0 AMU
Please mark Brainliest if this helped you! :)
Answer: The mass of lead deposited on the cathode of the battery is 1.523 g.
Explanation:
Given: Current = 62.0 A
Time = 23.0 sec
Formula used to calculate charge is as follows.

where,
Q = charge
I = current
t = time
Substitute the values into above formula as follows.

It is known that 1 mole of a substance tends to deposit a charge of 96500 C. Therefore, number of moles obtained by 1426 C of charge is as follows.

The oxidation state of Pb in
is 2. So, moles deposited by Pb is as follows.

It is known that molar mass of lead (Pb) is 207.2 g/mol. Now, mass of lead is calculated as follows.

Thus, we can conclude that the mass of lead deposited on the cathode of the battery is 1.523 g.
Easy peasy! All we need to do is plug this formula into our calculator:
-log(M)
So, we'd plug in -log(.2), which is 0.7 :)
The option that distinguishes a nuclear reaction from a chemical reaction is D. there is a change in the nucleus.
During a nuclear reaction, two light nuclei combine in order to create a new, heavier one which is different than those two original ones and has additional particles that it didn't have originally. This is what makes the difference between these two reactions.
Answer:
a group of electrochemical cells that can be recharged