The entropy of the given reactions increases (S° > 0):
- 2C2H6(g) + 7O2(g) ----> 4CO2(g) + 6H2O(g) ---> S° > 0.
- NH4Cl(s) ----> NH3(g) + HCl(g) ---> S° > 0.
<h3>What is entropy?</h3>
Entropy measure how disordered a system is. It a measure of how dispersed or random the total energy of a system is. The symbol for entropy is S.
A system in which entropy increases is one in which S° > 0.
The entropy of a system decreases when S° < 0.
Entropy of a system increases (S° > 0) if any change results in an increase in temperature, increase in number of molecules, or an increase in volume.
Considering the given systems, the entropy changes is as follows:
- 2C2H6(g) + 7O2(g) ----> 4CO2(g) + 6H2O(g) ---> S° > 0.
- 2CO2(g) + N2(g) ---->2CO(g) + 2NO(g) --> no change
- 2N2(g) + O2(g) -----> 2N2O(g) ---> decreases
- S (s,rhombic) + 2CO(g) ----> SO2(g) + 2C (s,graphite) ---> no change
- NH4Cl(s) ----> NH3(g) + HCl(g) ---> S° > 0.
In conclusion, an increase in volume and moles of substances results in entropy increase.
Learn more about entropy at: brainly.com/question/26691503
#SPJ1
Answer: Pumping can affect the level of the water table. In an aquifer, the soil and rock is saturated with water.
Explanation:
Muscles convert chemical energy into mechanical energy
Answer:
See Explanation
Explanation:
The question is incomplete; as the mixtures are not given.
However, I'll give a general explanation on how to go about it and I'll also give an example.
The percentage of a component in a mixture is calculated as:

Where
E = Amount of element/component
T = Amount of all elements/components
Take for instance:
In 
The amount of all elements is: (i.e formula mass of
)



The amount of calcium is: (i.e formula mass of calcium)



So, the percentage component of calcium is:




The amount of hydrogen is:



So, the percentage component of hydrogen is:




Similarly, for oxygen:
The amount of oxygen is:



So, the percentage component of oxygen is:




Answer:
see explanation
Explanation:
The process of ionization to produce cations is endothermic. For formation of Ca⁺² two ionization steps need be illustrated as follows...
1st ionization step: Ca° + 590Kj => Ca⁺ + e⁻
2nd ionization step: Ca⁺ + 1151Kj => Ca⁺² + e⁻
__________________________________-
Net Ionization Rxn: Ca° + 1741Kj => Ca⁺² + 2e⁻