Altitude is another word for height so it would be the first answer
the answer is to this is c
Answer:
4
Step-by-step explanation:
The median is the middle number
There are 15 data points
15/2 = 7.5
The middle number is the 8th number
The median is 4
![\bf f(x)=x+3x^{\frac{2}{3}}\implies \cfrac{dy}{dx}=1+3\left(\frac{2}{3}x^{-\frac{1}{3}} \right)\implies \cfrac{dy}{dx}=1+\cfrac{2}{\sqrt[3]{x}} \\\\\\ \cfrac{dy}{dx}=\cfrac{\sqrt[3]{x}+2}{\sqrt[3]{x}}\implies 0=\cfrac{\sqrt[3]{x}+2}{\sqrt[3]{x}}\implies 0=\sqrt[3]{x}+2\implies -2=\sqrt[3]{x} \\\\\\ (-2)^3=x\implies \boxed{-8=x}\\\\ -------------------------------\\\\ 0=\sqrt[3]{x}\implies \boxed{0=x}](https://tex.z-dn.net/?f=%5Cbf%20f%28x%29%3Dx%2B3x%5E%7B%5Cfrac%7B2%7D%7B3%7D%7D%5Cimplies%20%5Ccfrac%7Bdy%7D%7Bdx%7D%3D1%2B3%5Cleft%28%5Cfrac%7B2%7D%7B3%7Dx%5E%7B-%5Cfrac%7B1%7D%7B3%7D%7D%20%20%5Cright%29%5Cimplies%20%5Ccfrac%7Bdy%7D%7Bdx%7D%3D1%2B%5Ccfrac%7B2%7D%7B%5Csqrt%5B3%5D%7Bx%7D%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7Bdy%7D%7Bdx%7D%3D%5Ccfrac%7B%5Csqrt%5B3%5D%7Bx%7D%2B2%7D%7B%5Csqrt%5B3%5D%7Bx%7D%7D%5Cimplies%200%3D%5Ccfrac%7B%5Csqrt%5B3%5D%7Bx%7D%2B2%7D%7B%5Csqrt%5B3%5D%7Bx%7D%7D%5Cimplies%200%3D%5Csqrt%5B3%5D%7Bx%7D%2B2%5Cimplies%20-2%3D%5Csqrt%5B3%5D%7Bx%7D%0A%5C%5C%5C%5C%5C%5C%0A%28-2%29%5E3%3Dx%5Cimplies%20%5Cboxed%7B-8%3Dx%7D%5C%5C%5C%5C%0A-------------------------------%5C%5C%5C%5C%0A0%3D%5Csqrt%5B3%5D%7Bx%7D%5Cimplies%20%5Cboxed%7B0%3Dx%7D)
now, f(0) = 0, and f(-8) is an imaginary value or no real value.
now, f(-10) will also give us an imaginary value
and f(1) = 4
so, doing a first-derivative test on 0, is imaginary to the left and positive on the right, and before and after 1, is positive as well, so f(x) is going up on those intervals.
however, f(0) is 0 and f(1) is higher up, so the absolute maximum will have to be f(1), and we can use f(0) as a minimum, and since it's the only one, the absolute minimum.
the other two, the endpoint of -10 and the critical point of -8, do not yield any values for f(x).