Answer:



Explanation:
From the question we are told that
Mass of pitcher 
Force on pitcher 
Distance traveled 
Coefficient of friction 
a)Generally frictional force is mathematically given by



Generally work done on the pitcher is mathematically given as




b)Generally K.E can be given mathematically as

Therefore

c)Generally the equation for kinetic energy is mathematically represented by


Velocity as subject



<span>The property that matter has that energy does not is that matter has size, shape and occupies space. Matter also has inertia. Energy does not have any of these.</span>
D wavelength
velocity deals w/ speed
frequency/amplitude deals with sound
Answer:
Eleven seconds.
Explanation:
Two keys are needed to solve this problem. First, the conservation of momentum: allowing you to calculate the cart's speed after the elephant jumped onto it. It holds that:

So, once loaded with an elephant, the cart was moving with a speed of 4.29m/s.
The second key is the kinematic equation for accelerated motion. There is one force acting on the cart, namely friction. The friction acts in the opposite direction to the horizontal direction of the velocity v0, its magnitude and the corresponding deceleration are:

The kinematic equation describing the decelerated motion is:

It takes 11 seconds for the comical elephant-cart system to come to a halt.