1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
choli [55]
3 years ago
10

A student is driving through a mountainous region where the road is at some times flat, at some times inclined upward, and at so

me time inclined downward. The student maintains a speed of 20 m/s on the roadway, but is required to make an emergency stop on the three sepearte occasions. On levels roadway, it takes 25 m to stop. On a downward-sloping roadway, it takes 40 m to stop. On an upward-sloping roadway, it takes 18 m to stop. Explain why the stopping distances are different. (Focus answer using work and energy, other concepts may be used as well but be sure work and energy are included.)
Physics
1 answer:
VLD [36.1K]3 years ago
7 0

Answer:

Explanation:

It is frictional force of the ground that helps in bringing the vehicle to stop . In the process of stopping , negative work is done on the car by friction force to overcome its kinetic energy .

At levelled road , for stoppage

Kinetic energy of vehicle = Work done by frictional force . = friction force x displacement .

At upward slopping road , gravitational force acting downward also helps the vehicle to stop do friction has to do less work .

At upward inclined  road , for stoppage

Kinetic energy of vehicle = Work done by frictional force + work done by gravitational force  = (friction force + gravitational force ) x displacement .

Hence displacement is less .

At downward slopping road ,  friction has to do more work because friction has to do work against gravitational force acting downwards wards and kinetic energy of the vehicle  also .

At downward inclined  road , for stoppage

Kinetic energy of vehicle + work done by gravitational force  = Work done by frictional force = friction force  x displacement .

Hence displacement is more .

You might be interested in
What is the effect on the force of gravity between two objects if the mass of one object remains unchanged while the distance to
Vadim26 [7]

Answer:

The correct answer to the question is

B. It always decreases

Explanation:

To solve the question, we note that the foce of gravity is given by

F_G=\frac{Gm_1m_2}{r^2} where

G= Gravitational constant

m₁ = mass of first object

m₂ = mass of second object

r = the distance between both objects

If the mass of one object remains unchanged while the distance to the second object and the second object’s mass are both doubled, we have

F_{G2} =\frac{Gm_1(2m_2)}{(2r)^2} = \frac{2}{4} \frac{Gm_1m_2}{r^2}

Therefore the gravitational force is halved. That is it will always decrease

4 0
3 years ago
Answer this question ASAP please and thank you
allochka39001 [22]
The answer is Oscar Robertson and Jerry West !! hope this helps :p
8 0
3 years ago
Read 2 more answers
a brick is suspended above the ground at a height of 6.6 m. it has a mass of 5.3 kg. what is the potential energy of the brick
Svetradugi [14.3K]
The formula for potential energy is
E(p) = mgh

(Mass x gravity x height)

Therefore energy = (5.3)(9.8)(6.6)
= 342.8 J

How did I get 9.8?
9.8 is the constant for gravity
8 0
3 years ago
A train whistle is heard at 300 Hz as the train approaches town. The train cuts its speed in half as it nears the station, and t
spin [16.1K]

Answer:

The speed of the train before and after slowing down is 22.12 m/s and 11.06 m/s, respectively.

Explanation:

We can calculate the speed of the train using the Doppler equation:

f = f_{0}\frac{v + v_{o}}{v - v_{s}}        

Where:

f₀: is the emitted frequency

f: is the frequency heard by the observer  

v: is the speed of the sound = 343 m/s

v_{o}: is the speed of the observer = 0 (it is heard in the town)

v_{s}: is the speed of the source =?

The frequency of the train before slowing down is given by:

f_{b} = f_{0}\frac{v}{v - v_{s_{b}}}  (1)                  

Now, the frequency of the train after slowing down is:

f_{a} = f_{0}\frac{v}{v - v_{s_{a}}}   (2)  

Dividing equation (1) by (2) we have:

\frac{f_{b}}{f_{a}} = \frac{f_{0}\frac{v}{v - v_{s_{b}}}}{f_{0}\frac{v}{v - v_{s_{a}}}}

\frac{f_{b}}{f_{a}} = \frac{v - v_{s_{a}}}{v - v_{s_{b}}}   (3)  

Also, we know that the speed of the train when it is slowing down is half the initial speed so:

v_{s_{b}} = 2v_{s_{a}}     (4)

Now, by entering equation (4) into (3) we have:

\frac{f_{b}}{f_{a}} = \frac{v - v_{s_{a}}}{v - 2v_{s_{a}}}  

\frac{300 Hz}{290 Hz} = \frac{343 m/s - v_{s_{a}}}{343 m/s - 2v_{s_{a}}}

By solving the above equation for v_{s_{a}} we can find the speed of the train after slowing down:

v_{s_{a}} = 11.06 m/s

Finally, the speed of the train before slowing down is:

v_{s_{b}} = 11.06 m/s*2 = 22.12 m/s

Therefore, the speed of the train before and after slowing down is 22.12 m/s and 11.06 m/s, respectively.                        

I hope it helps you!                                                        

7 0
2 years ago
Why is the following situation impossible? A skater glides along a circular path. She defines a certain point on the circle as h
Arturiano [62]

Answer:

A skater glides along a circular path. She defines a certain point on the circle as her origin. Later on, she passes through a point at which the distance she has traveled along the path from the origin is smaller than the magnitude of her displacement vector from the origin.

So here in circular motion of the skater we can see that the total path length of the skater is along the arc of the circle while we can say that displacement is defined as the shortest distance between initial and final position of the object.

So it is not possible in any circle that arc-length is less than the chord joining the two points on the circle

As we know that arc length is given as

L = R\theta

length of chord is given as

L_c = 2Rsin(\frac{\theta}{2})

so here

L > L_c

R\theta > 2R sin(\frac{\theta}{2})

so we have

\frac{\theta}{2} > sin(\frac{\theta}{2})

6 0
2 years ago
Other questions:
  • A round loop of wire carries a current of 100 A, has a radius of 10 cm, and its normal (vector) makes an angle of 30∘ with a mag
    12·1 answer
  • A small motor is mounted on the axis of a space probe with its rotor (the rotating part of the motor) parallel to the axis of th
    7·1 answer
  • A batter hits a fly ball into the outfield. The
    10·2 answers
  • Plz help, its an emergency, giving lots of points for it. and srry if its in the wrong subject, not really sure? I just don't un
    13·2 answers
  • 15. You are watching a baseball game on television that 15
    7·1 answer
  • a closed system consitts of a pendumluem that is swinging back and forth. if the pendulums gravitational potential energy decrea
    8·1 answer
  • What causes infectious diseases?
    8·2 answers
  • You want to push a 71-kg box up a 16° ramp. The coefficient of kinetic friction between the ramp and the box is 0.23. With what
    14·1 answer
  • Good morning! Can someone please answer this, ill give you brainliest and you will earn 50 points.
    13·1 answer
  • NaCl solid is an example of a/an<br> A. Insulator<br> B. Conductor<br> OC. Nonmetal<br> D. Metalloid
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!