Answer:
<em>The drop voltage is 0.3 V</em>
Explanation:
Electromotive Force EMF
When connecting a battery of internal resistance Ri and EMF ε to an external resistance Re, the current through the circuit is:

The battery has an internal resistance of Ro=2 Ω, ε=24 V and is connected to an external resistance of Re=158 Ω. Thus, the current is:


i = 0.15 A
The drop voltage is the voltage of the internal resistance:



The drop voltage is 0.3 V
If the object's <em>velocity is constant</em> ... (it's speed isn't changing AND it's moving in a straight line) ... then the net force on the object is zero.<em> (D)</em>
Either there are no forces at all acting on the object, OR there are forces on it but they're 'balanced' ... when you add up all of their sizes and directions, they just exactly cancel each other out, and they have the SAME EFFECT on the object as if there were no forces at all.
Answer:
The maximum safe speed of the car is 30.82 m/s.
Explanation:
It is given that,
The formula that models the maximum safe speed, v, in miles per hour, at which a car can travel on a curved road with radius of curvature r r, is in feet is given by :
.........(1)
A highway crew measures the radius of curvature at an exit ramp on a highway as 380 feet, r = 380 feet
Put the value of r in equation (1) as :

v = 30.82 m/s
So, the maximum safe speed of the car is 30.82 m/s. Hence, this is the required solution.
The angle of reflection is equal to angle of incidence so the angle of reflection is also 32°.