Answer:
5080.86m
Explanation:
We will divide the problem in parts 1 and 2, and write the equation of accelerated motion with those numbers, taking the upwards direction as positive. For the first part, we have:


We must consider that it's launched from the ground (
) and from rest (
), with an upwards acceleration
that lasts a time t=9.7s.
We calculate then the height achieved in part 1:

And the velocity achieved in part 1:

We do the same for part 2, but now we must consider that the initial height is the one achieved in part 1 (
) and its initial velocity is the one achieved in part 1 (
), now in free fall, which means with a downwards acceleration
. For the data we have it's faster to use the formula
, where d will be the displacement, or difference between maximum height and starting height of part 2, and the final velocity at maximum height we know must be 0m/s, so we have:

Then, to get
, we do:



And we substitute the values:

Answer:
I'm sorry but I dont really know this answer
the correct answer is B. 1.27
Mechanical advantage of a lever is simply the ratio of the effort arm to the load arm.Effort arm is the distance from the pivot to the point of application of force while load arm is the distance of the lord from the pivot.
therefore, in this question, the effort arm is 0.28m while the load arm is 0.22 m. MA is calculated as follows: MA=effort arm/load arm
=0.28m/0.22m=1.27
Answer:
it's Newton's first law of motion
As the law states that.
Everybody continues in its rest or of uniform motion unless an external force acts on it.