Answer:
SAMPLE A - pure substance.
SAMPLE B - homogeneous mixture.
SAMPLE C - heterogeneous mixture.
Explanation:
Answer:
The main purpose of the expedition was to conduct a hydrographic survey of the coasts of the southern part of South America.
The statement "Although sulfuric acid is a strong electrolyte, an aqueous solution of H₂SO₄ contains more HSO₄⁻ ions than SO₄²⁻ ions is <u>True.</u> This is best explained by the fact that H₂SO₄ <u>is a diprotic acid where only the first hydrogen completely ionizes.</u>
Why?
H₂SO₄ is a diprotic acid. That means that it has <u>two hydrogen ions</u> to give to the solution. The two dissociation reactions are shown below:
H₂SO₄ + H₂O → HSO₄⁻ + H₃O⁺
HSO₄⁻ + H₂O ⇄ SO₄²⁻ + H₃O⁺
As the arrows show, the first dissociation is complete, meaning that all the sulfuric acid that is present initially is dissociated into HSO₄⁻ and H₃O⁺. However, the second dissociation is incomplete, and it's actually an equilibrium with an acid constant (Ka)of 1.2×10⁻².
That means that if the initial concentration of H₂SO₄ was 1M, the concentration of HSO₄⁻ is going to be 1M as well, but <u>the concentration of SO₄²⁻ is going to be much less than 1M</u>, according to the dissociation constant.
Have a nice day!
Answer:
0.123 moles of ammonia, can be produced
Explanation:
First of all, we need to determine the reaction:
Ammonia is produced by the reaction of hydrogen and nitrogen.
3H₂(g) + N₂(g) → 2NH₃(g)
Ratio is 3:2. Let's solve the question with a rule of three:
If 3 moles of hydrogen can produce 2 moles of ammonia
Then, 0.37 moles will produce (0.37 . 2) /3 = 0.123 moles