The picture is not loading as it requires a sign in.
However, I can tell you how to solve this.
Answer:
<span>As the wavelength gets shorter (closer together), the frequency of the wave increases.
Explanation:
The relation between frequency and wavelength can be described by the help of velocity as follows:
velocity = frequency * wavelength
This means that:
frequency = velocity / wavelength
Noting this equation, we will find that:
The frequency and the wavelength are inversely proportional to each other. This means that as the frequency increases, the wavelength decreases and vice versa.
Now, examining the choices given, we can find that the only statement showing the inverse relation between frequency and wavelength is:
</span><span>As the wavelength gets shorter (closer together), the frequency of the wave increases.
Hope this helps :)
</span>
Cations and anions are both ions. The difference between a cation and an anion is the net electrical charge of the ion. Ions are atoms or molecules which have gained or lost one or more valencee electron giving the ion a net positive or negative charge. Cations are ions with a net positive charge.
please mark as brainliest <3
The orbital hybridization of the central carbon atom in CSe2 is sp.
In chemical bonding, atomic orbitals may be combined to form appropriate hybrid orbitals suitable for bonding. The orbitals that combine during hybridization must be close enough in energy.
In the compound Cse2, carbon is the central atom bonded to two selenium atoms. The carbon atom in CSe2 is sp hybridized.
Learn more about orbital hybridization: brainly.com/question/1869903
Answer:
0.120M is the concentration of the solution
Explanation:
<em>Assuming the mass of sodium nitrate dissolved was 2.552g</em>
<em />
Molar concentration is an unit of concentration widely used in chemsitry defined as the moles of solute (In this case NaNO3) in 1L of solution.
To find this question we must find the moles of NaNO3 in 2.552g. With this mass and the volume (250mL = 0.250L) we can find molar concentration as follows:
<em>Moles NaNO3 -Molar mass: 84.99g/mol-</em>
2.552g * (1mol / 84.99g) = 0.0300 moles NaNO3
<em>Molar concentration:</em>
0.0300 moles NaNO3 / 0.250L =
<h3>0.120M is the concentration of the solution</h3>