The acid dissociation constant is 1.3 × 10^-3.
<h3>What is acid-dissociation constant?</h3>
The acid-dissociation constant is a constant that shows the extent of dissociation of an acid in solution. We have to set up the reaction equation as shown below;
Let the acid be HA;
HA + H2O ⇄ H3O^+ + A^-
since the pH of the solution is 2.57 then;
[H3O^+] = Antilog(-pH) = Antilog(-2.57) = 2.7 × 10^-3
We can see that; [H3O^+] = [A^-] so;
Ka = (2.7 × 10^-3)^2/(5.5 × 10^–3)
Ka = 1.3 × 10^-3
Learn more about acid-dissociation constant: brainly.com/question/9728159
Complete ionic:
Cu(aq) + 2Cl(aq) + 8O(aq) + 2Na(aq) + C(aq) + 3O(aq) = CaCO3(s) + 2Na(aq) + Cl(aq) + 4O(aq)
Net ionic:
Cu(aq) + Cl(aq) + 4O(aq) + 2Na(aq) + C(aq) + 3O(aq) = CaCO3(s)
So write everything out as IF it will dissociate in water. So everything that is aq splits but solid just floats to the bottom of the mixture. Cancel what you can (in this case the two from the ClO4 on the left of the equation cancels with the ClO4 from the right) and the 2Na cancels. Then, write out the whole solution and you are done!
Answer:
547.5g
Explanation:
To get the mass, you need moles.
moles = (molarity)(Liters)
moles = (1.230M)(4.200L) = 5.166 moles Na2CO3
Now, just use stoichiometry
molar mass of Na2CO3 = 2(mass of Na) + (mass of C) + 3(mass of O)
= 2(22.9) + 12.01 + 3(16) = 105.99g/mol
5.166moles(105.99g/mol)
= 547.544
But, the measurements given had 4 significant figures, so in chemistry we write:
547.5g
We can calculate for temperature by assuming the equation
for ideal gas law:
P V = n R T
Where,
P = pressure = 1.80 atm
V = volume = 18.2 L
n = number of moles = 1.20 moles
R = gas constant = 0.08205746 L atm / mol K
Substituting to the given equation:
T = P V / n R
T = (1.8 atm * 18.2 L) / (1.2 moles * 0.08205746 L atm /
mol K)
T = 332.70 K
We can convert K unit to ˚C unit by subtracting 273.15
to Kelvin, therefore
T = 59.55 ˚<span>C</span>
Answer:
The mass of 0.280 mole sample of sodium hydroxide NaOH is 11.2 grams.
Explanation:
To know the mass in grams of 0.280 moles of sample of sodium hydroxide NaOH, you must know the molar mass of the compound, that is, the mass of one mole of a substance, which can be an element or a compound.
So you know:
- Na: 23 g/mole
- O: 16 g/mole
- H: 1 g/mole
So, the molar mass of NaOH is:
NaOH= 23 g/mole + 16 g/mole+ 1 g/mole= 40 g/mole
Then the following rule of three can be applied: if in 1 mole of sodium hydroxide there are 40 grams, in 0.280 moles how much mass is there?

mass= 11.2 grams
<u><em>The mass of 0.280 mole sample of sodium hydroxide NaOH is 11.2 grams.</em></u>