Answer:
Whether the force exerted by the locomotive on the wall was larger
Than the force the locomotive could exert on the wall.
Explanation:
The Newton's third law of motion States that every force have it's equal and opposite reaction force, whose magnitude is the same as the applied force. Therefore the magnitude of these opposite forces will be equal.
So we have;
F12=-F21
F12 is the force in a direction
-F21 is the force in the opposite direction.
Therefore we see that the magnitude of the force the locomotive exerts on the wall is equal to the one the wall exerts on the locomotive. Both magnitudes are equal but in opposite directions.
Answer:
-1786.5J
Explanation:
Temperature 1=T1=25°c
Temperature 2=T2=200°c
Pressure P1=1bar
Pressure P2=0.5bars
T=37°c+273=310k
Note number if moles=1
Recall work done =2.3026RTlogp2/P1
2.3026*8.314*310log(0.5/1)
-1786.5J
-- First question . . . first answer choice
-- Second question . . . second answer choice
-- Third question . . . third answer choice
<span>An analogy is a comparison between one thing and another, typically for the purpose of explanation or clarification.</span><span>
An analogy of an electron carrier molecule and high energy electrons can be just like moving a potato. </span>A laundry basket filled with warm laundry can also be compared to an electron carrier. In this analogy, the laundry basket represents the electron carrier and the warm laundry represents the high energy electrons. There is another analogy that describes the process of electron carriers is a laundry basket filled with warm laundry can also be compared to an electron carrier. In this analogy, the laundry basket represents the electron carrier and the warm laundry represents the high energy electrons.
The gas would also decrease in size since the container lost gas to decrease the size of the container.