<span>The ball clears by 11.79 meters
Let's first determine the horizontal and vertical velocities of the ball.
h = cos(50.0)*23.4 m/s = 0.642788 * 23.4 m/s = 15.04 m/s
v = sin(50.0)*23.4 m/s = 0.766044 * 23.4 m/s = 17.93 m/s
Now determine how many seconds it will take for the ball to get to the goal.
t = 36.0 m / 15.04 m/s = 2.394 s
The height the ball will be at time T is
h = vT - 1/2 A T^2
where
h = height of ball
v = initial vertical velocity
T = time
A = acceleration due to gravity
So plugging into the formula the known values
h = vT - 1/2 A T^2
h = 17.93 m/s * 2.394 s - 1/2 9.8 m/s^2 (2.394 s)^2
h = 42.92 m - 4.9 m/s^2 * 5.731 s^2
h = 42.92 m - 28.0819 m
h = 14.84 m
Since 14.84 m is well above the crossbar's height of 3.05 m, the ball clears. It clears by 14.84 - 3.05 = 11.79 m</span>
Answer: Equinox comes from the Latin words aequi, which means "equal," and nox, which means "night." The vernal equinox is considered the first day of spring: finally, the day and night are of equal length.
Explanation: UwU O///O
Answer:
A.
Explanation: both triple by 3
Answer:
Calculate the mass of 6.022 × 1023 molecule of Calcium carbonate (CaCO3).
Solution —
Molar mass (Molecular mass in gram) of CaCO3 = 40+12+3×16 = 100 g
No. of moles of CaCO3
= No. of molecules/Avogadro constant
= 6.022 × 1023/ 6.022 × 1023
= 1 mole
Mass of CaCO3
= No. of moles × molar mass
= 1 × 100 g = 100 g.