<span>These are five questions with its five answers.
</span><span>
</span><span>
</span><span>First, we have to explain main question.
</span>
<span /><span /><span>
</span><span>The statement provides the chemical equation for the reaction of Fe with water to produce iron(III) oxide and hydrogen.
</span>
<span /><span /><span>
</span><span>Fe3O4 is a weird chemical formula. It belongs to the product named oxoiron.
</span>
<span /><span /><span>
Next, I have to tell how you must interpret the question. The five questions are based on the complete reaction of the same number of moles as the coefficients indicated in the chemical equation.
</span><span />
<span>Those coefficients are 3 for Fe, 4 for H₂O, 1 for Fe₃O₄ and 4 for H₂.
With that understood, let's work every question.
1) How many molecules of H₂ are produced?
Answer: 4 moles of molecules.
</span><span>Justification:
</span>
<span /><span /><span>This is, the number of moles of H₂ produced is given by the coefficient indicated in the chemical equation.
</span><span />
<span>2) How many oxygen atoms are required?
</span><span />
<span>Answer: 4.
</span><span>This is, the atoms of oxygen are supplied in the molecules of water. Since the coeffcient of water is 4, and each molecule o fwater has 1 atom of oxygen, 4 moles of water contain 4 moles of atoms of oxygen.
</span>
<span /><span /><span>
3) How many moles of Fe₃O₄ are formed?
</span><span />
<span>Answer: 1.
</span><span />
<span>Justification: the coefficient of for formula Fe₃O₄ is 1, indicating that the theoretical yield is 1 mol of molecules.
</span><span />
<span>4) What is the mole ratio of Fe to H₂O?
</span><span />
<span>Answer: 3:4
</span><span />
<span>Justification:
</span><span>
</span><span>
</span><span>The ratio is the quotient of the two coefficients: the coefficient of the Fe divided by the coefficient of the H₂O.
</span>
<span /><span /><span>
5) How many hydrogen atoms are involved in this reaction?
</span><span />
<span>Answer: 8 moles of hydrogen atoms.
</span><span />
<span>Justification: as you can see each molecule of H₂O has 2 atoms of hydrogen, then 4 moles of molecules of H₂O have 8 moles of atoms of hydrogen. And of course the same number are in the produt: 4 moles of H₂ contain 8 moles of atomos of hydrogen
</span><span>
</span><span>
</span>
Answer:
the question is bogus
see explanation
Explanation:
explain why the pressure in a sealed container of gas decreases when heat is added to the system?
when you add heat to the gas molecules in a sealed container, the molecules move faster and the pressure INCREASES!!!
IT DOES NOT DECREASE
PV =nrT
IF THE O THEVOLUME IS FIXED (REIN A SEALED CONTAINER) AND THE NUMBER OF MOLES n is FIXED, THEN THE PRESSURE IS DIRECTLY PROPORTIONAL THE TEMPERATURE
THE GREATER T, THE GREATER P
When studying atoms, scientists can ignore <u>the Gravitational</u> force between charged particles that make up the atoms because it is many millions of times smaller than other forces in the atom.
Explanation:
Scientists can ignore the gravitational force because the gravitational force is considered to be negligible as compared to the other forces due to its smaller value.We all know that the gravitational force is directly proportional to the mass of an object which result in a small force value.When the value of this small force is compared to the value of the electrical force between protons and electrons in atoms the we can say that the electrical force is million times stronger than the gravitational force
Thus we can say that scientists can ignore <u>the Gravitational</u> force between charged particles that make up the atoms because it is many millions of times smaller than other forces in the atom.
Answer: The number of N atoms in 137.0 g of N2O3 21.67 x 10∧23 atoms.
Explanation:
- We must obtain the number of moles of the compound: (n = mass/molar mass), mass = 137.0 g and molar mass of N2O3 = 76.01 g/mol.
- n = (137.0 g)/ (76.01 g/mol) = 1.80 mol.
- It is necessary to determine the number of molecules of this sample.
- Every mole contains Avagadro's number (6.02 x 10^23) of molecules.
- The number of molecules = (6.02 x 10^23)(1.80) = 10.84 x 10∧23 molecules.
- Every molecule of N2O3 contain 2 atoms of N.
- The number of N atoms in 137.0 g of N2O3 = (10.84 x 10∧23 molecule) (2 atoms) = 21.67 x 10∧23 atoms.
I think it will stay the same.