The diameter of the football player's piston is 0.55 m
Given that the mass of the cheerleader(m) is 55 kg, mass of football player to be hold (M) is 130 kg, height of the players (h) is 1.30 m, radius of the piston corresponding to the diameter (r) is 0.09 m, Diameter of football player's piston (R), P1 is Pressure on the cheerleader's side, P2 is Pressure on the football player's side
Using Pascal's law,
This law states that if there is a change at a point of a body immersed in a fluid then that change will spread thoroughly to each and every point of the body.
The formula of hydraulic system is,
P1= P2
F1/A1 = F2/A2
mg/πr^2 = 4Mg/πR^2
m/r^2=4M/R^2
R^2=4M×r^2/m
By plugging the values, we get.,
R^2=(4×130×0.09^2)/55
R^2=4.21/55=0.076
R=√0.076 = 0.275 m
Hence, diameter of football player's piston is 0.55 m
Learn more about Hydraulic lift here
brainly.com/question/19052774
#SPJ4
Answer:
Explanation:
a) using the energy conservation equation
mgh = 0.5mv^2 + 0.5Iω^2
I(moment of inertia) (basket ball) = (2/3)mr^2
mgh = 0.5mv^2 + 0.5( 2/3mr^2) ( v^2/r^2)
gh = 1/2v^2 + 1/3v^2
gh = v^2( 5/6)
v =
putting the values we get

solving for h( height)
h = 3.704 m apprx
b) velocity of solid cylinder
mgh = 0.5mv^2 + 0.5( mr^2/2)( v^2/r^2) where ( I ofcylinder = mr^2/2)
g*h = 1/2v^2 + 1/4v^2
g*h = 3/4v^2
putting the value of h and g we get
v= = 6.957 m/s apprx
The normal force acting on April as she stands on a flat surface is 705.6 N.
Normal force of the girl
Fₙ = mg
where;
- Fₙ is the normal force of the girl
- m is mass of the girl
- g is acceleration due to gravity
Fₙ = 72 x 9.8
Fₙ = 705.6 N
Thus, the normal force acting on April as she stands on a flat surface is 705.6 N.
Learn more about normal force here: brainly.com/question/14486416
#SPJ1
Answer:
gold
Explanation:
au stands for gold in the periodic table
Answer:
<em>The displacement of the object is -8 m</em>
Explanation:
<u>Displacement</u>
The displacement of a moving object can be calculated as the area under (or above) the graph of velocity vs time.
If the area is below the y-axis, then the displacement is negative. Otherwise is positive.
It's important to differentiate displacement from distance. Displacement takes into consideration the direction of the movement. Distance does not and it's always positive.
From the graph provided, we can see the velocity from t=12 s from t=16 s is negative, and the displacement will also be negative.
The displacement is calculated as the area of the triangle with base b=16-12= 4 seconds and height = -4 m/s, thus:

The displacement of the object is -8 m