1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Genrish500 [490]
3 years ago
13

11. Two point charges, initially 1 cm apart, are moved to a distance of 3 cm apart. By what factor

Physics
1 answer:
vampirchik [111]3 years ago
8 0

Answer:

9

Explanation:

You might be interested in
A plastic rod of length d = 1.5 m lies along the x-axis with its midpoint at the origin. The rod carries a uniform linear charge
Serga [27]

Answer:

Explanation:

Let the plastic rod extends from - L to + L .

consider a small length of dx on the rod on the positive x axis at distance x . charge on it =  λ dx where  λ is linear charge density .

It will create a field at point P on y -axis . Distance of point P

= √ x² + .15²

electric field at P due to small charged length

dE = k λ dx x  / (x² + .15² )

Its component along Y - axis

= dE cosθ where θ is angle between direction of field dE and y axis

= dE x .15 / √ x² + .15²

=  k λ dx  .15 / (x² + .15² )³/²

If we consider the same strip along the x axis at the same position  on negative x axis , same result will be found . It is to be noted that the component of field in perpendicular to y axis will cancel out each other . Now for electric field due to whole rod at point p , we shall have to integrate the above expression from - L to + L

E = ∫  k λ  .15  / (x² + .15² )³/² dx

=  k λ  x L / .15 √( L² / 4 + .15² )

6 0
3 years ago
Two objects, Object A and Object B, need to be identified. Object A's index of refraction is determined to be 1.77, and Object B
Slav-nsk [51]

The correct answer is

C. Light can pass through Object B faster than it can pass through Object A.

In fact, the index of refraction of a material is defined as:

n=\frac{c}{v}

where c is the speed of light in vacuum and v is the speed of light in the material. Rearranging the equation, we can write the speed of light in the material as:

v=\frac{c}{n}

So we that, the smaller the refractive index n, the greater the speed of light in the material, v. In this problem, object B has lower refractive index than object A, so light travels faster in object B.

4 0
3 years ago
Read 2 more answers
Two fixed charges, q1 = +1.07µC and q2 = -3.28µC, are 61.8cm apart. Where may a third charge be located so that no net force act
egoroff_w [7]

Answer:

12...lollll

Explanation:

.

3 0
3 years ago
Read 2 more answers
Class characteristics serve as corroboration for other, more subjective pieces of evidence in a courtroom (like witness testimon
Amiraneli [1.4K]

Answer: True

Explanation:

Class characteristics can be define as the features which are common to the group of objects. Like the make, model, label of the manufacturing company, design, shape and form. The individual characteristics can be define as the features which develop on the object or any other article with it's wear and use. Like tear, cuts, malformation and deposition of dust, dirt, and mud. The individual characteristic indicate towards the ownership of article or evidence to a particular person.

The class characteristics can only support the possibility of the evidence exactly alike that of the evidence found at the scene of crime. But the individual characteristics can directly link the evidence with the cause of crime. Hence, will be useful to prove that a crime has taken place in the court of law.

8 0
3 years ago
Read 2 more answers
Two small plastic spheres are given positive electrical charges. When they are a distance of 14.8cm apart, the repulsive force b
sdas [7]

Answer:

Explanation:

Case I: They have same charge.

Charge on each sphere = q

Distance between them, d = 14.8 cm = 0.148 m

Repulsive force, F = 0.235 N

Use Coulomb's law in electrostatics

F=\frac{Kq_{1}q_{2}}{d^{2}}

By substituting the values

0.235=\frac{9\times10^{9}q^{2}}{0.148^{2}}

q=7.56\times10^{-7}C

Thus, the charge on each sphere is q=7.56\times10^{-7}C.

Case II:

Charge on first sphere = 4q

Charge on second sphere = q

distance between them, d = 0.148 m

Force between them, F = 0.235 N

Use Coulomb's law in electrostatics

F=\frac{Kq_{1}q_{2}}{d^{2}}

By substituting the values

0.235=\frac{9\times 10^{9}\times 4q^{2}}{0.148^{2}}

q=3.78\times10^{-7}C

Thus, the charge on second sphere is q=3.78\times10^{-7}C and the charge on first sphere is 4q = 4\times 3.78\times 10^{-7}=1.51 \times 10^{-6} C.

6 0
3 years ago
Other questions:
  • Why is wavelength the main limiting factor on limit of resolution in light microscopy?
    5·1 answer
  • ASAP!
    13·2 answers
  • The graph shows the heating curve of water.
    11·2 answers
  • Find the average power Pavg created by the force F in terms of the average speed vavg of the sled.
    10·1 answer
  • kenneth warmed up a 100- ml sample of air in and expandable container. he displayed the resluts in the following graph. the resl
    13·1 answer
  • How to read a vernier calipers?
    5·2 answers
  • A fluid flows through a pipe whose cross-sectional area changes from 2.00 m2 to 0.50 m2 . If the fluid’s speed in the wide part
    14·1 answer
  • For an object to appear blue, what must the object do to blue light waves?
    15·1 answer
  • How is mass of the body measured ? Define one second ?
    10·1 answer
  • Which of the following is false
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!