Answer:
69.66 Joule
Explanation:
mass of bicycle frame, mf = 8.29 kg
mass of wheel, mw = 0.820 kg
radius, r = 0.343 m
velocity, v = 3.6 m/s
There are two wheels in the bicycle.
There are two types of kinetic energy of the system one is kinetic energy of rotation and another is rotational kinetic energy.




K = 69.66 J
Answer:
The magnitude of the torque the bucket produces around the center of the cylinder is 26.46 N-m.
Explanation:
Given that,
Mass of bucket = 54 kg
Radius = 0.050 m
We need to calculate the magnitude of the torque the bucket produces around the center of the cylinder
Using formula of torque


Where, m = mass
g = acceleration due to gravity
r = radius
Put the value into the formula


Hence, The magnitude of the torque the bucket produces around the center of the cylinder is 26.46 N-m.
Answer:
x_{cm} = 4.644 10⁶ m
Explanation:
The center of mass is given by the equation
= 1 /
∑
Where M_{total} is the total masses of the system,
is the distance between the particles and
is the masses of each body
Let's apply this equation to our problem
M = Me + m
M = 5.98 10²⁴ + 7.36 10²²
M = 605.36 10²² kg
Let's locate a reference system located in the center of the Earth
Let's calculate
x_{cm} = 1 / 605.36 10²² [Me 0 + 7.36 10²² 3.82 10⁸]
x_{cm} = 4.644 10⁶ m
Answer:
water can be used as displacement to calculate the volume of a solid object.
Answer:
option (D)
Explanation:
Here initial rotation speed is given, final rotation speed is given and asking for time.
If we use
A) θ=θ0+ω0t+(1/2)αt2
For this equation, we don't have any information about the value of angular displacement and angular acceleration, so it is not useful.
B) ω=ω0+αt
For this equation, we don't have any information about angular acceleration, so it is not useful.
C) ω2=ω02+2α(θ−θ0)
In this equation, time is not included, so it is not useful.
D) So, more information is needed.
Thus, option (D) is true.