For a 166-lb person, a dose of 452 milligrams is prescribed to treat asthma.
<h3>How would you define asthma?</h3>
Lung damage is a side effect of asthma. Repeated episodes of coughing, dyspnea, chest tightness, and wheezing are also brought on by it. By taking medication and avoiding the triggers that can set off an attack, asthma can be managed. Outdoor allergens, such as pollen from grass, trees, and weeds, are common asthma triggers. Different allergens and irritants might function as triggers for different people. Dust mites, cockroaches, mold, and pet dander are examples of indoor allergies. Air irritants like smoke, chemical fumes, and powerful scents.
Mass = 166 lb×(453.59 g/1 lb)×(1kg/1000g)=75.30 kg
Dose = 75.30 kg ×(6.00 mg/1 kg)=452 mg
Elixophyllin has a 452 mg dose for a 166 lb person with asthma.
To know more about asthma, click here:
brainly.com/question/5009040
#SPJ4
The answer for this question would be B) False or the second option because top-down processing is NOT often used when one encounters an unfamiliar stimulus.
Answer:
The correct answer is B
Explanation:
Let's calculate the electric field using Gauss's law, which states that the electric field flow is equal to the charge faced by the dielectric permittivity
Φ
= ∫ E. dA =
/ ε₀
For this case we create a Gaussian surface that is a sphere. We can see that the two of the sphere and the field lines from the spherical shell grant in the direction whereby the scalar product is reduced to the ordinary product
∫ E dA =
/ ε₀
The area of a sphere is
A = 4π r²
E 4π r² =
/ ε₀
E = (1 /4πε₀
) q / r²
Having the solution of the problem let's analyze the points:
A ) r = 3R / 4 = 0.75 R.
In this case there is no charge inside the Gaussian surface therefore the electric field is zero
E = 0
B) r = 5R / 4 = 1.25R
In this case the entire charge is inside the Gaussian surface, the field is
E = (1 /4πε₀
) Q / (1.25R)²
E = (1 /4πε₀
) Q / R2 1 / 1.56²
E₀ = (1 /4π ε₀
) Q / R²
= Eo /1.56
²
= 0.41 Eo
C) r = 2R
All charge inside is inside the Gaussian surface
=(1 /4π ε₀
) Q 1/(2R)²
= (1 /4π ε₀
) q/R² 1/4
= Eo 1/4
= 0.25 Eo
D) False the field changes with distance
The correct answer is B
A well maintained bicycle is key. Oil the chain so that it's less likely to get hung up. It will have a smoother flow. Another could be in their clothing. Notice they usually wear good fitting clothing? I believe the more from fitting pants help clothing friction. Another way could be keeping the tires well inflated so that the tires aren't dragging. Rolling along smoothly on properly inflated tires seems like a must. Get a few more answers along with mine, so that you have a variety to choose from.
Explanation:
In a vacuum (no air resistance), it doesn't. All falling objects, regardless of mass, accelerate at the same rate.
However, when air resistance is taken into account, heavier objects indeed fall faster than lighter objects, provided they have the same shape and size. For example, a lead ball falls faster than a styrofoam ball.
To understand why, first look at what factors affect air resistance:
D = ½ρv²CA
where ρ is air density,
v is velocity,
C is drag coefficient,
and A is cross sectional area.
As falling objects accelerate, they eventually reach a maximum velocity where air resistance equals weight. This is called terminal velocity.
D = W
½ρv²CA = mg
v = √(2mg/(ρCA))
If we increase m while holding everything else constant, v increases. So two objects with the same size and shape but different masses will have different terminal velocities, with the heavier object falling faster.