Answer:
a) 
b)
c)
d)= 0 and the direction of motion is equal to zero
Explanation:
a) compton shift



b) the new wavelength



![=hc[\frac{1}{\lambda'}-\frac{1}{\lambda}]](https://tex.z-dn.net/?f=%3Dhc%5B%5Cfrac%7B1%7D%7B%5Clambda%27%7D-%5Cfrac%7B1%7D%7B%5Clambda%7D%5D)
![\Delta E = 6.626*10^{-34}*(3*10^8)[\frac{1}{14.84*10^{-12}}-\frac{1}{4.8*10^{-12}}]](https://tex.z-dn.net/?f=%5CDelta%20E%20%3D%206.626%2A10%5E%7B-34%7D%2A%283%2A10%5E8%29%5B%5Cfrac%7B1%7D%7B14.84%2A10%5E%7B-12%7D%7D-%5Cfrac%7B1%7D%7B4.8%2A10%5E%7B-12%7D%7D%5D)

C)By conservation of energy, the kinetic energy of recoiling electron is equal to the magnitude of energy between the photon energy

d) the angle between the positive direction of motion

= 0
the direction of motion is equal to zero.
Answer:
what i don't understand the question
Answer:
h = 157.70 meters
Explanation:
Given the following data;
Mass = 5.5 kg
Gravitational potential energy = 8500 Joules
We know that acceleration due to gravity is equal to 9.8 m/s².
To find the height of the object;
Gravitational potential energy (GPE) is an energy possessed by an object or body due to its position above the earth.
Mathematically, gravitational potential energy is given by the formula;

Where;
G.P.E represents potential energy measured in Joules.
m represents the mass of an object.
g represents acceleration due to gravity measured in meters per seconds square.
h represents the height measured in meters.
Substituting into the formula, we have;
8500 = 5.5*9.8*h
8500 = 53.9h
h = 8500/53.9
h = 157.70 m
Answer:
The magnitude of the radial acceleration is 0.754 rad/s²
Explanation:
Given;
radius of the flywheel, r = 0.2 m
initial angular velocity of the flywheel, 
angular acceleration of the flywheel, a = 0.900 rad/s².
angular distance, θ = 120⁰
the angular distance in radian = 
Apply the following kinematic equation to determine the final angular velocity;

The magnitude of the radial acceleration is calculated as;

Therefore, the magnitude of the radial acceleration is 0.754 rad/s²