Answer:
is the current through the body of the man.
energy dissipated.
Explanation:
Given:
- time for which the current lasted,

- potential difference between the feet,

- resistance between the feet,

<u>Now, from the Ohm's law we have:</u>


is the current through the body of the man.
<u>Energy dissipated in the body:</u>



Weight. Because there is less gravity on the moon.
"Q = ΔU + W" is the equation is used to solve the questions related to "First law of thermodynamics".
<h3> What is the first law of thermodyanamics?</h3>
"First law of thermodynamics" states that "energy" neither created nor destroyed, but it can transfer from "one form of energy" to "another form of energy".
This "First law of thermodynamics" is also called as "law of conversation of energy". The formula for "First law of thermodynamics" of a system is that "change in internal energy of a system" is same as the difference of "heat energy" flows across the " boundaries of a system" and the "work done" on the system.
ΔU = Q - W
Q = ΔU + W
Where, "ΔU" is "change in internal energy", "Q" is "heat transferred and "W" is "work done.
Hence "Q = ΔU + W" is the equation is used to solve the questions related to "First law of thermodynamics".
To know more about the First law of thermodynamics follow
brainly.com/question/15071682
Answer:
1. 218.55 N
2. 
3. 
Explanation:
Part 1;
Net force
where m is mass, g is gravitational force and
is the angle of inclination

Frictional force,
is given by
where
is the coefficient of static friction


Since
, therefore, the block doesn’t slip and the frictional force acting is mgh=218.55N
Part 2.
Using the relationship that
Frictional force 



The maximum angle of inclination 

Part 3:
Net force on the object is given by
where
is the coefficient of kinetic friction

= 9.8 ( sin 38 - (0.51) cos 38 )
= 