1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tatiyna
3 years ago
9

At what time was the person at a position of 0m?

Physics
1 answer:
Anni [7]3 years ago
8 0

Answer: The person was not at a position of "0" at any time. The person started at 10 metres from the starting line. The explanation below shows how to use the standard formula for position when the initial position is not "0". It is noteworthy that the standard expression of the formula for distance travelled does not include a variable (e.g. "d") for distance at the start (when t(time) = 0)

Explanation: At time = 0, the start, the person was at 10m distance from the starting line. Therefore, to use the standard equation, "s + ut + 1/2att (t squared, that is), distance from starting line = 10 + s, that is, total distance from starting line  equals initial position, 10 metres, plus "s" (distance travelled from t = 0 to t = 1) in metres.

for the section of the graph from "0" seconds (t = 0) to 1 second (t = 1):

s = ut + 1/2att

the initial position is 10 metres.

s = 10

the distance is constant from t = 0 to t = 1, therefore the velocity for the whole of that section of graph must be 0.

u = 0

there is no change in the velocity from t = 0 to t= 1, therefore the acceleration for the first section of the graph must be 0.

a = 0

s = ut + 1/2att

  = (0 x 1) + 1/2 (0 x 1 x 1)

  = (0) + 1/2 (0)

  = 0

total distance from starting line (position) equals initial position plus change in position (distance travelled).

at t = 1,

position = 10 + 0

 = 10 metres

The whole of the graph can be analysed using this process for each straight section of the graph separately, adding "s" for each section to the previous total of distance from starting line.

using "d" for initial distance from starting line ( position ), d1 for distance from starting line at t = 1, d2 for distance from starting line at t = 2, etcetera:

section 1, t = 0 to t = 1:

d1 (t=0 to t=1)  =  10 + s (t=0 to t=1).

section 2, t= 1 to t = 2:

d2 (t=0 to t=2) = 10 + s (t=0 to t=1) + s (t=1 to t=2).

etcetera.

You might be interested in
Where does the engery of an earthquake originate
allochka39001 [22]
From convection of magma under the earths crust makes the plates slowly move and as they move over time they build up potential energy from the different plates grinding against each other and after so long the plates will lose there grip on each other and release the potential energy they've been building up for so long as kinetic energy causing what you know as an earthquake hope this helps please give brainliest
6 0
3 years ago
A diver leaves the end of a 4.0 m high diving board and strikes the water 1.3s later, 3.0m beyond the end of the board. Consider
shutvik [7]

Answer:

4.0 m/s

Explanation:

The motion of the diver is the motion of a projectile: so we need to find the horizontal and the vertical component of the initial velocity.

Let's consider the horizontal motion first. This motion occurs with constant speed, so the distance covered in a time t is

d=v_x t

where here we have

d = 3.0 m is the horizontal distance covered

vx is the horizontal velocity

t = 1.3 s is the duration of the fall

Solving for vx,

v_x = \frac{d}{t}=\frac{3.0 m}{1.3 s}=2.3 m/s

Now let's consider the vertical motion: this is an accelerated motion with constant acceleration g=9.8 m/s^2 towards the ground. The vertical position at time t is given by

y(t) = h + v_y t - \frac{1}{2}gt^2

where

h = 4.0 m is the initial height

vy is the initial vertical velocity

We know that at t = 1.3 s, the vertical position is zero: y = 0. Substituting these numbers, we can find vy

0=h+v_y t - \frac{1}{2}gt^2\\v_y = \frac{0.5gt^2-h}{t}=\frac{0.5(9.8 m/s^2)(1.3 s)^2-4.0 m}{1.3 s}=3.3 m/s

So now we can find the magnitude of the initial velocity:

v=\sqrt{v_x^2+v_y^2}=\sqrt{(2.3 m/s)^2+(3.3 m/s)^2}=4.0 m/s

4 0
3 years ago
Please help i'm going to throw up from stress
Eddi Din [679]

Answer:

Explanation:

First of all, I used the specific heat of water as 4182 J/(kgC) and the specific heat of ethyl alcohol (EtOH) as 2440 J/(kgC); that means that we need the masses in kg, not g.

120.g = .1200 kg of ethyl alcohol. Now for the formula:

t_f=\frac{(m_{H2O}*spheat_{H2O}*temp_{H2O})+(m_{EtOH}*spheat_{EtOH}*temp_{EtOH})}{(m_{H2O}*spheat_{H2O})+(m_{EtOH}*spheat_{EtOH})} where spheat is specific heat.

Filling that horrifying-looking formula in with some values:

16.0=\frac{(x*4182*20.0)+(.1200*2440*10.0)}{(x*4182)+(.1200*2440)} and

16.0=\frac{83640x+2928}{4182x+292.8} and

16(4182x + 292.8) = 83640x + 2928 and

66912x + 4684.8 = 83640x + 2928 and

1756.8 = 16728x so

x = .105 kg and the amount of water added is 105 g

4 0
3 years ago
What is transferred by electromagnetic radiation?
Vedmedyk [2.9K]

Answer:energy

Explanation:

Energy is transferred by electromagnetic radiation

6 0
3 years ago
A 120.0 kg crate is placed on a 15.00°
Citrus2011 [14]

F = 2820.1 N

Explanation:

Let the (+)x-axis be up along the slope. The component of the weight of the crate along the slope is -mgsin15° (pointing down the slope). The force that keeps the crate from sliding is F. Therefore, we can write Newton's 2nd law along the x-axis as

Fnet = ma = 0 (a = 0 no sliding)

= F - mgsin15°

= 0

or

F = mgsin15°

= (120 kg)(9.8 m/s^2)sin15°

= 2820.1 N

7 0
3 years ago
Other questions:
  • What formula relstes work n power
    11·1 answer
  • What is the following product<br> √10 * √10<br><br> 10<br> 10√10<br> 100<br> 2√10
    9·2 answers
  • What is the size of earth?
    14·2 answers
  • What is the origin of magma
    8·2 answers
  • À stone is thrown
    6·1 answer
  • What is the frequency of this wave?
    9·2 answers
  • A train travels from Albuquerque, New Mexico, to Mexico City in 4 hours with an average velocity of 80 km/h to the south. What i
    9·2 answers
  • One of the most common diseases a pet gets intestate with, is a worm infection in the stomach. 'Tape worm' is one such worm whic
    8·1 answer
  • I've been on this for a while please help me
    12·1 answer
  • Compare and contrast camera obscura with what you know about modern digital photography, including cell phones.
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!