<span>A capacitor with a very large capacitance is in series with a capacitor
that has a very small capacitance.
The capacitance of the series combination is slightly smaller than the
capacitance of the small capacitor. (choice-C)
The capacitance of a series combination is
1 / (1/A + 1/B + 1/C + 1/D + .....) .
If you wisk, fold, knead, and mash that expression for a while,
you find that for only two capacitors in series, (or 2 resistors or
two inductors in parallel), the combination is
(product of the 2 individuals) / (sum of the individuals) .
In this problem, we have a humongous one and a tiny one.
Let's call them 1000 and 1 .
Then the series combination is
(1000 x 1) / (1000 + 1)
= (1000) / (1001)
= 0.999 000 999 . . .
which is smaller than the smaller individual.
It'll always be that way. </span>
Answer:
Explanation:
<em>Position is the location of the object (whether it's a person, a ball, or a particle) at a given moment in time.</em>
<em>Displacement is the difference in the object's position from one time to another.</em>
<em>Distance is the total amount the object has traveled in a certain period of time.</em>
<em />
<em>I hope this helps!</em>
<em />
Answer: ME= E total - E thermal
Answer:
Measurements are an important part of comparing things, as they provide the basis on comparing objects to other objects. Measurements allow us to recognize three hours and see how it's shorter than five hours, without having to observe the hours passing by themselves.
The answer is A bc I did the quiz and I got it right