Answer is B. ABAB. Hope it helped you, and have a great day.
-Charlie
The density of ice is less than the density of water. C
It is weight, if I understand your question.
<u><em>The question doesn't provide enough data to be solved, but I'm assuming some magnitudes to help you to solve your own problem</em></u>
Answer:
<em>The maximum height is 0.10 meters</em>
Explanation:
<u>Energy Transformation</u>
It's referred to as the change of one energy from one form to another or others. If we compress a spring and then release it with an object being launched on top of it, all the spring (elastic) potential energy is transformed into kinetic and gravitational energies. When the object stops in the air, all the initial energy is now gravitational potential energy.
If a spring of constant K is compressed a distance x, its potential energy is

When the launched object (mass m) reaches its max height h, all that energy is now gravitational, which is computed as

We have then,


Solving for h

We have little data to work on the problem, so we'll assume some values to answer the question and help to solve the problem at hand
Let's say: x=0.2 m (given), K=100 N/m, m=2 kg
Computing the maximum height


The maximum height is 0.10 meters
Answer:
Frictional force, F = 45.9 N
Explanation:
It is given that,
Weight of the box, W = 150 N
Acceleration, 
The coefficient of static friction between the box and the wagon's surface is 0.6 and the coefficient of kinetic friction is 0.4.
It is mentioned that the box does not move relative to the wagon. The force of friction is equal to the applied force. Let a is the acceleration. So,



Frictional force is given by :


F = 45.9 N
So, the friction force on this box is closest to 45.9 N. Hence, this is the required solution.