1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pav-90 [236]
3 years ago
7

How does the law of conservation of energy apply to machinesBased on the law of conservation of energy, how can we reasonably im

prove a machine’s ability to do work?
Physics
1 answer:
SIZIF [17.4K]3 years ago
8 0

Answer:

According,to the law of conservation of energy,the amount of energy in a closed system always stay constant. ... So,the amount of work output and other transformed energy is equal to the amount of energy inputs. • In this way,the conservation of energy is fulfilled by the machines.

You might be interested in
Will a seismic wave traveling through a solid go slower or faster than a seismic wave traveling through a liquid? Why?
Snezhnost [94]
You can't answer this question because you aren't giving the specific type of seismic waves. There is an s-wave a p-wave and an l-wave. Those are the basic waves. An S-wave cannot travel through a liquid at all. So, obviously it travels slower than any other seismic wave. 


<span>It would travel faster because their speed depends on the density and composition of material that they pass through.</span>
3 0
2 years ago
Sodium = Na
ad-work [718]
Boron - B
Explanation
6 0
3 years ago
Read 2 more answers
What kind of system does not allow matter or energy to enter or exit?
Vilka [71]

a closed system does not allow matter or energy to pass through

6 0
3 years ago
Describe the main reason why the scientific community did not accept Alfred wegener idea of continental drift?
lara31 [8.8K]
<span>I think they were also too skeptic to believe the continent did move or pull apart, even today do you believe that the continents broke from one big flat plate, and that they pulled apart? They also wonder what large force would be responsible for the movement.

It was much later that evidences from plant and animal features that had similarity from two different planets came up that scientists began accepting the idea of continental drift.
And similar rock strata from two different opposite continents, showed similar rock strata.
All these evidences came up much later after Alfred Wengener.

So Alfred Wengener was honored Posthumously</span>
7 0
3 years ago
A uniform beam with mass M and length L is attached to the wall by a hinge, and supported by a cable. A mass of value 3M is susp
Jobisdone [24]

Answer:

The tension is  T= \frac{11}{2\sqrt{3} } Mg

The horizontal force provided by hinge   Fx= \frac{11}{4\sqrt{3} } Mg

Explanation:

   From the question we are told that

          The mass of the beam  is   m_b =M

          The length of the beam is  l = L

           The hanging mass is  m_h = 3M

            The length of the hannging mass is l_h = \frac{3}{4} l

            The angle the cable makes with the wall is \theta = 60^o

The free body diagram of this setup is shown on the first uploaded image

The force F_x \ \ and \ \ F_y are the forces experienced by the beam due to the hinges

      Looking at the diagram we ca see that the moment of the force about the fixed end of the beam along both the x-axis and the y- axis is zero

     So

           \sum F =0

Now about the x-axis the moment is

              F_x -T cos \theta  = 0

     =>     F_x = Tcos \theta

Substituting values

            F_x =T cos (60)

                 F_x= \frac{T}{2} ---(1)

Now about the y-axis the moment is  

           F_y  + Tsin \theta  = M *g + 3M *g ----(2)

Now the torque on the system is zero because their is no rotation  

   So  the torque above point 0 is

          M* g * \frac{L}{2}  + 3M * g \frac{3L}{2} - T sin(60) * L = 0

            \frac{Mg}{2} + \frac{9 Mg}{4} -  T * \frac{\sqrt{3} }{2}    = 0

               \frac{2Mg + 9Mg}{4} = T * \frac{\sqrt{3} }{2}

               T = \frac{11Mg}{4} * \frac{2}{\sqrt{3} }

                   T= \frac{11}{2\sqrt{3} } Mg

The horizontal force provided by the hinge is

             F_x= \frac{T}{2} ---(1)

Now substituting for T

              F_{x} = \frac{11}{2\sqrt{3} } * \frac{1}{2}

                  Fx= \frac{11}{4\sqrt{3} } Mg

4 0
3 years ago
Other questions:
  • True/False:Scientific endeavor should always be pursued, regardless of the known trade offs associated with the research.
    10·1 answer
  • How fast does light year travel
    7·2 answers
  • What is the mass and density of 237 mL of water
    10·1 answer
  • Some people say that the “force of inertia” (and “force of momentum”) throws the passengers forward when a car brakes sharply. w
    6·1 answer
  • when you boil water to make pasta hot water from the bottom of the pan carries thermal energy to water molecules at the top the
    13·1 answer
  • Now suppose that the Earth had the same mass and radius as it currently does, but all of the mass was concentrated into a thin (
    15·1 answer
  • Which state has the most fixed shape?<br> O A. Gas<br> O B. Solid<br> O C. Liquid<br> O D. Plasma
    12·1 answer
  • What type of organism is most likely to be oxidase positive?
    12·1 answer
  • Being willing to sincerely apologize for mistakes errors and blunders goes a long way toward
    9·1 answer
  • Hello, I am so confused about this problem, could you help ?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!