You can't answer this question because you aren't giving the specific type of seismic waves. There is an s-wave a p-wave and an l-wave. Those are the basic waves. An S-wave cannot travel through a liquid at all. So, obviously it travels slower than any other seismic wave.
<span>It would travel faster because their speed depends on the density and composition of material that they pass through.</span>
a closed system does not allow matter or energy to pass through
<span>I think they were also too skeptic to believe the continent did move or pull apart, even today do you believe that the
continents broke from one big flat plate, and that they pulled apart?
They also wonder what large force would be responsible for the movement.
It
was much later that evidences from plant and animal features that had
similarity from two different planets came up that scientists began
accepting the idea of continental drift.
And similar rock strata from two different opposite continents, showed similar rock strata.
All these evidences came up much later after Alfred Wengener.
So Alfred Wengener was honored Posthumously</span>
Answer:
The tension is 
The horizontal force provided by hinge 
Explanation:
From the question we are told that
The mass of the beam is
The length of the beam is 
The hanging mass is 
The length of the hannging mass is 
The angle the cable makes with the wall is 
The free body diagram of this setup is shown on the first uploaded image
The force
are the forces experienced by the beam due to the hinges
Looking at the diagram we ca see that the moment of the force about the fixed end of the beam along both the x-axis and the y- axis is zero
So

Now about the x-axis the moment is

=> 
Substituting values


Now about the y-axis the moment is

Now the torque on the system is zero because their is no rotation
So the torque above point 0 is





The horizontal force provided by the hinge is

Now substituting for T

