No. "Shuttle" has been pretty much used to indicate shuttling
between Earth and Earth-orbit.
The devices that have tooled around on the surface of Mars
have been referred to as "rovers". That was also the nickname
of the buggy on which the Apollo astronauts moved around on
the Moon in the early 1970s ... the "lunar rover".
The sentence can be completed as follows:
"<span>When more than one wave is in the same location at the same time, then there is interference between the waves"
In fact, when there are two or more waves in the same location at the same time, their amplitude sum together. The two extreme possibilities are:
- costructive interference: the two waves arrive on phase at the same location (=their crests arrive at the same location at the same time). In this case, the amplitudes of the waves sum together and the resultant wave has greater amplitude.
- destructive interference: the two waves arrive out of phase at the same location. In this case, the amplitudes of the two waves cancel out, and the resultant wave has amplitude zero.</span>
Answer: 200 knots
Explanation: the maximum indicated airspeed at which aircraft may be flown when at or below 2,500 feet AGL and within 4 nautical miles of the primary airport of Class C airspace is 200 KNOTS
Answer:
Explanation:
Given that,
Initial Angular velocity w=500rpm
Converting from rpm to rad/s
1rev =2πrad
1minutes =60secs
500rpm=500rev/mins
w = 500×2π/60
wi=52.36rad/s
The final angular velocity wf=0rad/s
Time to stop is t=2.6sec
We want to find angular acceleration α
Using the equation of angular motion
wf = wi + αt.
0 = 52.36 + 2.6α
-52.36=2.6α
α = -52.36/2.6
α = -20.14rad/s²
The angular acceleration is negative because it is decelerating.
Then, α=20.14rad/s²
Greenhouse Gases, on relation to Earth's atmosphere.