Answer:
Car travel a distance of 60.06 m in 6 sec
Explanation:
We have given initial velocity v = 20 m/sec
Time = 6 sec
As the car stops finally so final velocity v = 0
From the first equation of motion
v = u+at (as the car velocity is slows down means it is a case of deceleration)
So v = u-at


Now from second equation of motion
<span> force of 10.0 N
</span>
<span>distance of 0.9 m
w=f*d
w=10*0.9
=9.0 j</span>
When a cloud of gas and dust in space was disturbed, maybe by the explosion of a nearby star.This explosion made waves in space which squeezed the cloud of gas & dust.
Answer: 3.48g
Explanation:
here, we will be using conservation of momentum to solve the problem. i.e the total momentum remains unchanged, unless an external force acts on the system. We'll in thus question, there is no external force acting in the system.
Remember, momentum = mass * velocity, then
mass of blood * velocity of blood = combined mass of subject and pallet * velocity of subject and pallet
Velocity of blood = 56.5cm = 0.565m
mass of blood * 0.565 = 54kg * (0.000063/0.160)
mass of blood * 0.565 = 54 * 0.00039375
mass of blood * 0.565 = 0.001969
mass of blood = 0.00348kg
Thus, the mass of blood that leaves the heart is 3.48g
Answer:
84.196%
Explanation:
g = Acceleration due to gravity = 9.81 m/s²
x = 10 m
t = Time taken
= 3.5 m/s (assumed, as it is not given)
= 
We have the equation


From continuity equation we have

Fraction is given by

The fraction is 84.196%