Explanation:
It is given that initially pressure of ideal gas is 4.00 atm and its temperature is 350 K. Let us assume that the final pressure is
and final temperature is
.
(a) We know that for a monoatomic gas, value of
is \frac{5}{3}[/tex].
And, in case of adiabatic process,
= constant
also, PV = nRT
So, here
= 350 K,
, and 
Hence, 

= 267 K
Also,
= 4.0 atm,
, and 


= 2.04 atm
Hence, for monoatomic gas final pressure is 2.04 atm and final temperature is 267 K.
(b) For diatomic gas, value of
is \frac{7}{5}[/tex].
As,
= constant
also, PV = nRT
= 350 K,
, and 


= 289 K
And,
= 4.0 atm,
, and 


= 2.27 atm
Hence, for diatomic gas final pressure is 2.27 atm and final temperature is 289 K.
The speed of an object in a mass-spring system is given under the function

Here,
m = mass
k = Spring constant
A = Amplitude
x = Position
When the position is at the equilibrium point (x = 0), the speed will be maximum, and could even be expressed as

So the correct answer is B.
Two acetate rods, both charged with silk would repel because they are both have positively charged electrons.
Explanation: Opposite charges attract. Like charges repel.
Given :
Initial velocity, u = 12.5 m/s.
Height of camera, h = 64.3 m.
Acceleration due to gravity, g = 9.8 m/s².
To Find :
How long does it take the camera to reach the ground.
Solution :
By equation of motion :

Putting all given values, we get :

t = 2.56 and t = −5.116.
Since, time cannot be negative.
t = 2.56 s.
Therefore, time taken is 2.56 s.
Hence, this is the required solution.