Speed of the car given initially
v = 18 m/s
deceleration of the car after applying brakes will be
a = 3.35 m/s^2
Reaction time of the driver = 0.200 s
Now when he see the red light distance covered by the till he start pressing the brakes


Now after applying brakes the distance covered by the car before it stops is given by kinematics equation

here
vi = 18 m/s
vf = 0
a = - 3.35
so now we will have


So total distance after which car will stop is


So car will not stop before the intersection as it is at distance 20 m
Answer:
The value of F= - 830 N
Since the force is negative, it implies direction of the force applied was due south.
Explanation:
Given data:
Mass = 1000-kg
Distance, d = 240 m
Initial velocity, v1 = 20.0 m/s
Final velocity, v2 = 0 (since the car came to rest after brake was applied)
v2²= v1² + 2ad (using one of the equation of motion)
0= 20² + (2 x a x 240)
0= 400 + 480 a
a = - 400/480
a = - 0.83 m/s²
Then, imputing the value of a into
F = ma
F = 1000 kg x ( - 0.83 m/s²)
F= - 830 N
The car was driving toward the north, and since the force is negative, it implies direction of the force applied was due south.
Answer:
If I were you, I would recommend a trumpet its the easiest instrument to play butits my opinion its your decision.
Explanation:
Answer:
1402.73 m
Explanation:
Mass of Azurite=3.25 lb
Percent of copper in AZurite mineral=55.1%
Diameter of copper wire,d=0.0113 in
Radius of copper wire=

Density of copper=
1 lb=454 g
3.25 lb=
Mass of Azurite=
Mass of copper=
Density=
Using the formula

Volume of copper wire=
Radius of copper wire=
1 in=2.54 cm
Volume of copper wire=

Using the formula



1 m=100 cm

Hence, the length of copper wire required=1402.73 m
Answer:
D. Resultant Vector
Explanation:
By definition, adding 2 vectors gives a resultant vector