Answer:
scientists use information about the past to build their climate models. scientists test their climate models by using them to forecast past climates. when scientists can accurately forecast past climates, they can be more confident about using their models to predict future climates.
Explanation:
scientists use information about the past to build their climate models. scientists test their climate models by using them to forecast past climates. when scientists can accurately forecast past climates, they can be more confident about using their models to predict future climates.
This is a problem of conservation of momentum
Momentum before throwing the rock: m*V = 96.0 kg * 0.480 m/s = 46.08 N*s
A) man throws the rock forward
=>
rock:
m1 = 0.310 kg
V1 = 14.5 m/s, in the same direction of the sled with the man
sled and man:
m2 = 96 kg - 0.310 kg = 95.69 kg
v2 = ?
Conservation of momentum:
momentum before throw = momentum after throw
46.08N*s = 0.310kg*14.5m/s + 95.69kg*v2
=> v2 = [46.08 N*s - 0.310*14.5N*s ] / 95.69 kg = 0.434 m/s
B) man throws the rock backward
this changes the sign of the velocity, v2 = -14.5 m/s
46.08N*s = - 0.310kg*14.5m/s + 95.69kg*v2
v2 = [46.08 N*s + 0.310*14.5 N*s] / 95.69 k = 0.529 m/s
Answer:
Explanation:
As the circuit is parallel, then there is no effect of other branches as the potential difference across each arm is same.
The complete queston is The amount of a radioactive element A at time t is given by the formula
A(t) = A₀e^kt
Answer: A(t) =N e^( -1.2 X 10^-4t)
Explanation:
Given
Half life = 5730 years.
A(t) =A₀e ^kt
such that
A₀/ 2 =A₀e ^kt
Dividing both sides by A₀
1/2 = e ^kt
1/2 = e ^k(5730)
1/2 = e^5730K
In 1/2 = 5730K
k = 1n1/2 / 5730
k = 1n0.5 / 5730
K= -0.00012 = 1.2 X 10^-4
So that expressing N in terms of t, we have
A(t) =A₀e ^kt
A₀ = N
A(t) =N e^ -1.2 X 10^-4t