Answer: B) Particles can be filtered from a suspension.
Explanation: Colloids are solutions with particle size intermediate between true solutions and suspensions. They exhibit tyndall effect that is scattering of light.
Suspensions have large sized particles which settle when left undisturbed for sometime and thus can be filtered off easily.
The particle size in colloids is less and hence they do not settle under the effect of gravity.
A solution can be homogeneous in which the composition is uniform or heterogeneous in which is the composition is not uniform.
Answer: hello your question lacks some data attached below is the missing data
answer :
a) 3-methyl heptane
b) 2-methyl pentane
c) 2-methyl heptane
d) 2-methyl hexane
e) 3-methyl hexane
Explanation:
we will select the longest carbon chain as the branched alkane and name it
a) 3-methyl heptane ( first diagram )
b) 2-methyl pentane ( second diagram )
c) 2-methyl heptane ( third diagram )
d) 2-methyl hexane ( fourth diagram )
e) 3-methyl hexane ( fifth diagram )
<em>Note : sixth diagram = first diagram </em>
You have 0.50 mol of NH3 and 0.20 mol of NH4+ to start (NH4Cl dissolves completely), given the molarity and 1.0 L solution.
30.0 mL of 1.0 M HCl is 0.0300 mol of HCl. This will react with the NH3 to produced 0.030 mol of NH4+.
You now have 0.47 mol NH3 and 0.23 mol NH4+. Now use the Henderson-Hasselbach equation to calculate your pH. The equation says to use concentration of acid and base, but you can just use the moles of them because it doesn’t make a difference.
pH = pKa + log(base/acid)
pKa = 14 - pKb = 14 - 4.75 = 9.25
pH = 9.25 + log(0.47/0.23) = 9.56
To find amount of atoms from mol, multiply the mole amount by Avogadro’s number
5.70x10^32 x 6.02x10^23
= 3.43x10^56 atoms