In reaction 1 of the Krebs cycle, acetyl‑CoA formed in the pyruvate dehydrogenase reaction condenses with the four‑carbon compound to form <em>citrate </em>with the elimination of coenzyme A. Since the product has three carboxyl groups, this pathway is referred to as the cycle. In reaction 2 of the Krebs cycle, this product then undergoes to form<em> isocitrate. </em>The enzyme is called aconitase because the compound cis‑aconitate is the <em>intermediate product</em> of the reaction. Reaction 3 eliminates CO2 to form the five‑carbon dicarboxylic acid <em>α-cetoglutarate. </em>Oxidation also occurs, with electrons transferred from the substrate to <em>COO-</em> . Consequently, this reaction is an oxidative decarboxylation.
In the image, you can see the reaction 2 in Krebs cycle is a two steps reaction with an intermediate cis-aconitase and a product called isocitrate.
Answer:
Ionic compounds contain ions and are held together by the attractive forces among the oppositely charged ions
Explanation:
Common salt (sodium chloride) is one of the best-known ionic compounds. Molecular compounds contain discrete molecules, which are held together by sharing electrons (covalent bonding).
The information that the coefficients of a balanced equation give about the reactants are to tell how many moles of reactants are needed and how many moles of product can be produced.
Answer:
If a gas has experienced a small increase in volume but has maintained the same pressure and number of moles, the temperature of the gas will DROP.
Explanation:
According to Boyle’s law of ideal gases, volume and temperature of a gas is inversely related, as long as the pressure is kept constant;
P₁V₁/T₁ = P₂V₂/T₂
Therefore, if the volume of the gas increases, the temperature will definitely decrease due to the inverse relationship. The gas will get cooler.
Learn More:
For more on Boyle's Law check out;
brainly.com/question/13362447
brainly.com/question/2568628
brainly.com/question/12049334
#LearnWithBrainly