Answer:
43.05 moles of Al needed to react with 28.7 moles of FeO.
Explanation:
Given data:
Moles of FeO = 28.7 mol
Moles of Al needed to react with FeO = ?
Solution:
Chemical equation:
2Al + 3FeO → 3Fe + Al₂O₃
Now we will compare the moles of Al with FeO.
FeO : Al
2 : 3
28.7 : 3/2×28.7 = 43.05 mol
Thus 43.05 moles of Al needed to react with 28.7 moles of FeO.
According to Newton's first law of motion, it takes an unbalanced force to move an object at rest.
I hope this helps :)
Answer:- Frequency is
.
Solution:- frequency and wavelength are inversely proportional to each other and the equation used is:

where,
is frequency, c is speed of light and
is the wavelength.
Speed of light is
.
We need to convert the wavelength from nm to m.
(
)

= 
Now, let's plug in the values in the equation to calculate the frequency:

=
or 
since, 
So, the frequency of the green light photon is
.
I’m pretty sure true, just not your skull at birth hehe. hope this helps :)
Answer:
The mass of the products left in the test tube will be less than that of the original reactants.
Explanation
The equation for the reaction is
Mg(s) + 2HCl(aq) → MgCl2(aq) + H2(g)
1.0 3.0 3.9 0.1
Assume you started with 1.0 g of Mg.
It will react with 3.0 g of HCl to form 3.9 g of MgCl2 and 0.1 g of H2
.
Mass of reactants = mass of products
1.0 g + 3.0 g = 3.9 g + 0.1 g
4.0 g = 4.0 g
The Law of Conservation of Mass is obeyed.
However, your test tube and its contents will weigh 0.1 g less than it did before the reaction.
Does that contradict the Law of Conservation of Mass? It does not.
One of the products was the gas, hydrogen, and it escaped from the test tube. You weren't measuring all the products, so test tube and its contents weighed less than before.