1) 2700 kg/l
2) 13.6 kg/l
3) 0.1578 kg
4) 8921.5 kg/m3
5) 1.59 kg/l
6) 1.84 kg/l
7) 0.21965 kg
8) 11331.9 kg/m3
9) 7.9167 kg/l
10) 238.095 cm3
Just divide the masses by volume to find out the density, multiply the volume with density to find out the mass and divide the mass by density to find out the volume.
To turn the result into SI unit (kg/l), divide the g by 1000 and ml by 1000.
12gHe/1 × 1molHe/4.0026g × 6.02x10^23atomHe/1mol = 1.8 atoms
Answer:
A (True)
Explanation:
Because ibuprofen has a chiral carbon center (carbon bonded to 4 distinct groups of atoms).
This means that a mixture of ibuprofen can rotate plane-polarized light equally in both the clockwise and counterclockwise direction.
<u>Answer:</u> The rate law of the reaction is ![\text{Rate}=k[HgCl_2][C_2O_4^{2-}]^2](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BHgCl_2%5D%5BC_2O_4%5E%7B2-%7D%5D%5E2)
<u>Explanation:</u>
Rate law is defined as the expression which expresses the rate of the reaction in terms of molar concentration of the reactants with each term raised to the power their stoichiometric coefficient of that reactant in the balanced chemical equation.
For the given chemical equation:

Rate law expression for the reaction:
![\text{Rate}=k[HgCl_2]^a[C_2O_4^{2-}]^b](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BHgCl_2%5D%5Ea%5BC_2O_4%5E%7B2-%7D%5D%5Eb)
where,
a = order with respect to 
b = order with respect to 
Expression for rate law for first observation:
....(1)
Expression for rate law for second observation:
....(2)
Expression for rate law for third observation:
....(3)
Expression for rate law for fourth observation:
....(4)
Dividing 2 from 1, we get:

Dividing 2 from 3, we get:

Thus, the rate law becomes:
![\text{Rate}=k[HgCl_2]^1[C_2O_4^{2-}]^2](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BHgCl_2%5D%5E1%5BC_2O_4%5E%7B2-%7D%5D%5E2)