Well scientific laws are really laws! You can't change a scientific law and laws can be facts as well. Hope this helps!
Answer:
Explanation:
Firstly, we have to determine the mass of metal X. We can do that by interpreting the first and second statement mathematically.
Metal X can form 2 oxides (A and B).
A + B = 3g
The mass of oxygen in A is 0.72g and the mass of oxygen in B is 1.16g.
The mass of metal X in the two oxides will be the same because it's the same metal.
Thus, we represent the mass of the metal in the two oxides as 2X.
2X + 0.72 + 1.16 = 3
2X + 1.88 = 3
2X = 3 - 1.88
2X = 1.12
X = 0.56
<u>Thus, 0.56 g of the metal combines with 0.72g of oxygen in A and 1.16 g of oxygen in B.</u>
Thus, mass of metal (X) in 1g of oxygen in A is
0.56g ⇒ 0.72g
X ⇒ 1
X = 1 × 0.56/0.72
X = 0.78 g
Hence, 0.78g of the metal will combine with 1g of oxygen for A
Also, mass of metal (X) in 1g of oxygen in B is
0.56g ⇒ 1.16g
X ⇒ 1g
X = 1×0.56/1.16
X = 0.48 g
Thus, 0.48g of the metal will combine with 1g of oxygen for B
i really dont know and im so so so so sorry
Answer: The layers of the rocks in one region of the parks are smooth and distinct, which are evidence of many, many years of deposition. The layers on the rocks are because of different deposition of sediments. Different sediments deposited over the rocks through wind, water and ice over the ages
Explanation:
Oxygen has a relatively <em><u>low </u></em>solubility coefficient and therefore requires a <em><u>steep </u></em>(high) partial pressure gradient to help diffuse the gas into the blood.
Solubility is described as the limiting amount of an element that can dissolve in any amount of solvent at a set temperature. Since oxygen has a low coefficient of this, it requires the help of a higher partial pressure gradient to diffuse properly into the bloodstream.
To learn more visit:
brainly.com/question/13620168?referrer=searchResults