Answer:
15
Explanation:
P=W/T
T=6sec
W=?
F=60N
S=18m
W=F X S. .s indicate displacement
W=60x18
W=108
So p=108 j/6sec
P=15watt
Answer:
A) T1 = 269.63 K
T2 = 192.59 K
B) W = -320 KJ
Explanation:
We are given;
Initial volume: V1 = 7 m³
Final Volume; V2 = 5 m³
Constant Pressure; P = 160 KPa
Mass; m = 2 kg
To find the initial and final temperatures, we will use the ideal gas formula;
T = PV/mR
Where R is gas constant of helium = R = 2.0769 kPa.m/kg
Thus;
Initial temperature; T1 = (160 × 7)/(2 × 2.0769) = 269.63 K
Final temperature; T2 = (160 × 5)/(2 × 2.0769) = 192.59 K
B) world one is given by the formula;
W = P(V2 - V1)
W = 160(5 - 7)
W = -320 KJ
To calculate the ideal mechanical advantage for an inclined plane, divide th length of the incline by the height of the incline.
Therefore; IMA = L/h
L= 3.0 m, while h =1.0 m
IMA = 3/1
= 3
Therefore the IMA of the ramp is 3
This means the ramp increases the force that is being exerted by 3 times.
The answer is to increase energy. Hope this helps!
you're so beautiful!
_____________________________︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎ ︎