1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alekssandra [29.7K]
3 years ago
9

The coefficient of cubical expansion of a substance depends upon

Physics
1 answer:
zzz [600]3 years ago
7 0
<span>I think that the coefficient of cubical expansion of a substance depends on THE CHANGE IN VOLUME.

Cubical expansion, also known as, volumetric expansion has the following formula:

</span>Δ V = β V₁ ΔT

V₁ = initial volume of the body
ΔT = change in temperature of the body
β = coefficient of volumetric expansion.

β is defined as the <span>increase in volume per unit original volume per Kelvin rise in temperature.
</span>
With the above definition, it is safe to assume that the <span>coefficient of cubical expansion of a substance depends on the change in volume, which also changes in response to the change in temperature. </span>
You might be interested in
A 50.0 kg object rests on a horizontal surface. The coefficient of static friction between the box and the surface is 0.300 and
MariettaO [177]

Answer:

f=140\ N

Explanation:

Given:

  • mass of the object on a horizontal surface, m=50\ kg
  • coefficient of static friction, \mu_s=0.3
  • coefficient of kinetic friction, \mu_k=0.2
  • horizontal force on the object, F=140\ N

<u>Now the value of limiting frictional force offered by the contact surface tending to have a relative motion under the effect of force:</u>

F_s=\mu_s.N

where:

N= normal force of reaction acting on the body= weight of the body

F_s=0.3\times (50\times 9.8)

F_s=147\ N

As we know that the frictional force acting on the body is always in the opposite direction:

So, the frictional force will not be at its maximum and will be equal in magnitude to the applied external force and hence the body will not move.

so, the frictional force will be:

f=140\ N

8 0
3 years ago
The distance between the earth and sun is 1.5 x 108 kilometers and the speed of light is 3.00 x 108 meters per second. Calculate
butalik [34]

Answer:

time = 8.3333 minutes.

Explanation:

distance between earth and sun = 1.5 * 10^{8}km

speed of light = 3* 10^{8}m/s

convert the distance unit from km to m so we can have uniform units.

distance between earth and sun = 1.5 *10^{8}*1000m

distance between earth and sun = 1.5 * 10^{11}m

speed = distance /time

time = distance / speed

time = \frac{1.5*10^{11} }{3*10^{8} }

= 0.5*10^{3}

time =500 sec

time = 500/60 minutes

time = 8.3333 minutes.

3 0
3 years ago
(4A) The mass of Earth is 5.972 * 10^24 kg, and the radius of Earth is 6,371 km.
faltersainse [42]

Answer:

x₁ = 345100 km

Explanation:

The direction of the attraction forces between the earth and the object, and between the moon and the object, are in opposite direction and  (along the straight line between the centers of earth and moon) and as gravity is always attractive, the net force will become zero when both forces are equal. According to this:

Let  call "x₁"  distance between center of the earth and the object, and

"x₂" the distance between center of the moon and the object, Mt mass of the earth, Ml mass of the moon, m₀ mass of the object

we can express:

F₁  ( force between earth and the object )

F₁ = K *  Mt * m₀/ ( x₁)²        K is a gravitational constant

F₂  (force between mn and the object)

F₂ = K * Ml * m₀ / (x₂)²

Then:

F₁ = F₂               K*Mt*m₀ / x₁²   =  K*Ml*m₀ /x₂²

Or  simplifying the expression

Mt/ x₁²  =  Ml/ x₂²

We know that   x₁   +  x₂  = 384000 Km then

x₁ =  384000 - x₂

Mt/( 384000 - x₂)²  =  Ml / x₂²

Mt *  x₂²  =  Ml *( 384000 - x₂)²

We need to solve for x₂

Mt *  x₂²  =  Ml *[ ( 384000)² + x₂² - 768000*x₂]

By substitution:

5.972*10∧24*x₂² = 7.348*10∧22 * [ 1.47*10∧11 ] + 7.348*10∧22*x₂² -

                                7.348*10∧22*768000*x₂

Simplifying by 10∧22

5.972*10²*x₂²  = 7.348* [ 1.47*10∧11 ] + 7.348*x₂²- 7.348*768000*x₂

Sorting out

5.972*10²*x₂²- 7.348*x₂² = 10.80*10∧11 - 56,43* 10∧5*x₂

(597,2 - 7,348 )* x₂²  = 10.80*10∧11 - 56.43*10∧5*x₂

590x₂²  + 56.43*10∧5*x₂ - 10.80*10∧11 = 0

Is a second degree equation

x₂  =  -56.43*10∧5 ± √3184*10∧10 + 25488*10∧11  / 1160

x₂ ₁  = -56.43*10∧5 + √3184*10∧10 + 25488*10∧11  / 1160

x₂ ₁  =  -56.43*10∧5 + √3184*10∧10 + 254880*10∧10  / 1160

x₂ ₁  = -56.43*10∧5 + 10∧5 [ √3184 + 254880 ] /1160

x₂ ₁  =  -56.43*10∧5 + 508* 10∧5  / 1160

x₂ ₁  =  451.27*10∧5/1160

x₂ ₁  =  4512.7*10∧4 /1160

x₂ ₁  = 3.89*10∧4  km (distance between the moon  and the object)

x₂ ₁  = 38900 km

x₂ = 38900 km

We dismiss the other solution because is negative and there is not a negative distance

Then the distance between the earth and the object is:

x₁  = 384000 - x₂

x₁ = 384000 - 38900

x₁ = 345100 km

5 0
3 years ago
A power station with an efficiency e generates W watts of electric power and dissipates D J of heat energy each second to the co
Andrews [41]

Answer: 13.94 tons/s

Explanation:

On adding heat energy to a substance, the temperature would be changed by a particular amount. This relationship between heat energy and temperature is often different for each material. The specific heat, is a value that describes how they relate.

Heat energy = mass flow rate * specific heat * Δ T

Q = MC (ΔΦ)

Heat energy, Q= 3.5*10^8J

Mass flow rate, M= ?

Specific heat, C= 4184j/KgC

Change in temperature, ΔΦ= 6°C

M = Q/CΔΦ

M = (3.5*10^8)/4184*6

M = 13942kg/s

M = 13.94 tons/s

3 0
3 years ago
A government agency estimated that air bags have saved over 14,000 lives as of April 2004 in the United States. (They also state
balu736 [363]

To solve this problem it is necessary to apply the concepts related to momentum, momentum and Force. Mathematically the Impulse can be described as

I = F*t

Where,

F= Force

t= time

At the same time the moment can be described as a function of mass and velocity, that is

P = m\Delta v \rightarrow P=m(v_1-v_2)

Where,

m = mass

v = Velocity

From equilibrium the impulse is equal to the momentum, therefore

I = p

Ft = m(v_1-v_2)

PART A) Since the body ends at rest, we have the final speed is zero, so the momentum would be

p=m(v_1-v_2)

p = 75*0.15

p = 1125Kg\cdot m/s

Therefore the magnitude of the person's impulse is 1125Kg.m/s

PART B) From the equation obtained previously we have that the Force would be:

Ft = m(v_1-v_2)

F(0.025)= 1125

F= 45000N

Therefore the magnitude of the average force the airbag exerts on the person is 45000N

6 0
3 years ago
Other questions:
  • Which characteristics do all terrestrial planets have?
    13·2 answers
  • Use what you know about mass and how you use it to calculate force in the following situation. If each washer has a mass of 4.9
    15·2 answers
  • The impulse given to a ball with mass of 4 kg is 28 N s. If the ball were already moving at 3 m/s what would the final velocity
    10·1 answer
  • by scale drawing, find the resultant of vectors 70N inclined at100N and direction of the resultant 100N​
    6·1 answer
  • Why is it hard to breathe when you go higher up
    7·1 answer
  • Where does the food you eat end up in your body?
    11·1 answer
  • Consider a wave along the length of a stretched slinky toy, where the distance between coils increases and decreases. What type
    14·2 answers
  • HELP ASAP
    12·1 answer
  • What is the difference between reflection and refraction? What changes and what does not change.
    14·1 answer
  • All 2023 ariya ac synchronous drive motors produce ____% torque at 0 mph for impressive off-the-line acceleration and smooth cru
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!