Quantitative data can be counted, measured, and expressed using numbers. Qualitative data is descriptive and conceptual.
Answer:
Define a problem, form a hypothesis, gather experimental data, form a conclusion
Answer:
Tamoxifen is an irreversible, competitive inhibitor.
Explanation:
In order to binds to the active site of the estrogen receptor protein, tamoxifen have to compete with the other chemical compound, and inhibits the estrogen release, so it is a competitive inhibitor. Then, you said that when tamoxifen binds to the receptor, the protein is permanently deactivated, so it is also irreversible.
Answer:
A). The complementary shapes of an enzyme and a substrate.
Explanation:
The Lock-and-key mechanism was proposed by Emil Fischer for the first time and characterized as the metaphor which helps in elucidating the specificity of the enzymatic reactions. In this metaphor, the lock is described as the enzyme while 'key' is characterized as the substrate which the enzyme acts upon. If the key is not appropriately sized, it will not fit into the active site i.e. the keyhole of the lock or enzyme and reaction will not take place. Thus, <u>option A</u> is the correct answer.
Answer:
In the given chemical reaction:
Species Oxidized: I⁻
Species Reduced: Fe³⁺
Oxidizing agent: Fe³⁺
Reducing agent: I⁻
As the reaction proceeds, electrons are transferred from I⁻ to Fe³⁺
Explanation:
Redox reaction is a chemical reaction involving the simultaneous movement of electrons thereby causing oxidation of one species and reduction of the other species.
The chemical species that <u><em>gets reduced by gaining electrons </em></u><u>is called an </u><u><em>oxidizing agent</em></u>. Whereas, the chemical species that <u><em>gets oxidized by losing electrons </em></u><u>is called a </u><u><em>reducing agent</em></u><u>.</u>
Given redox reaction: 2Fe³⁺ + 2I⁻ → 2Fe²⁺ + I₂
<u>Oxidation half-reaction</u>: 2 I⁻ + → I₂ + 2 e⁻ ....(1)
<u>Reduction half-reaction</u>: [ Fe³⁺ + 1 e⁻ → Fe²⁺ ] × 2
⇒ 2 Fe³⁺ + 2 e⁻ → 2 Fe²⁺ ....(2)
In the given redox reaction, <u>Fe³⁺ (oxidation state +3) accepts electrons and gets reduced to Fe²⁺ (oxidation state +2) and I⁻ (oxidation state -1) loses electrons and gets oxidized to I₂ (oxidation state 0).</u>
<u>Therefore, Fe³⁺ is the oxidizing agent and I⁻ is the reducing agent and the electrons are transferred from I⁻ to Fe³⁺.</u>