This question is missing the part that actually asks the question. The questions that are asked are as follows:
(a) How much of a 1.00 mg sample of americium remains after 4 day? Express your answer using 2 significant figures.
(b) How much of a 1.00 mg sample of iodine remains after 4 days? Express your answer using 3 significant figures.
We can use the equation for a first order rate law to find the amount of material remaining after 4 days:
[A] = [A]₀e^(-kt)
[A]₀ = initial amount
k = rate constant
t = time
[A] = amount of material at time, t.
(a) For americium we begin with 1.00 mg of sample and must convert time to units of years, as our rate constant, k, is in units of yr⁻¹.
4 days x 1 year/365 days = 0.0110
A = (1.00)e^((-1.6x10^-3)(0.0110))
A = 1.0 mg
The decay of americium is so slow that no noticeable change occurs over 4 days.
(b) We can simply plug in the information of iodine-125 and solve for A:
A = (1.00)e^(-0.011 x 4)
A = 0.957 mg
Iodine-125 decays at a much faster rate than americium and after 4 days there will be a significant loss of mass.
Answer:
kinetic energy
Explanation:
When the object is released, the gravitational potential energy is gradually converted into kinetic energy as it picks up speed.
Answer:def has to be someone you loved by Lewis Capaldi
Explanation:
Thermoplastic and thermosetting
thermoplastic:- they are easily molded and extruded into films, fibres and packaging.For eg. PVC
thermosetting:-they are hard and durable and can be used for aircraft parts,tires and auto parts .For eg. phenolic resins.
<em><u>HOPE</u></em><em><u> </u></em><em><u>THIS</u></em><em><u> </u></em><em><u>HELPS</u></em><em><u> </u></em><em><u>YOU</u></em><em><u> </u></em><em><u>✌️</u></em>